An Entailment Checker for Separation Logic with Inductive Definitions
DOI:
https://doi.org/10.14279/tuj.eceasst.76.1073Abstract
In this paper, we present Inductor, a checker for entailments between mutually recursive predicates, whose inductive definitions contain ground constraints belonging to the quantifier-free fragment of Separation Logic. Our tool implements a proof-search method for a cyclic proof system that we have shown to be sound and complete, under certain semantic restrictions involving the set of constraints in a given inductive system. Dedicated decision procedures from the DPLL(T)-based SMT solver CVC4 are used to establish the satisfiability of Separation Logic formulae. Given inductive predicate definitions, an entailment query, and a proof-search strategy, Inductor uses a compact tree structure to explore all derivations enabled by the strategy. A successful result is accompanied by a proof, while an unsuccessful one is supported by a counterexample.Downloads
Published
2019-05-14
How to Cite
[1]
C. Serban and R. Iosif, “An Entailment Checker for Separation Logic with Inductive Definitions”, eceasst, vol. 76, May 2019.
Issue
Section
Articles
License
Copyright (c) 2019 Electronic Communications of the EASST
This work is licensed under a Creative Commons Attribution 4.0 International License.