
Produce more accurate domain models by using OCL constraints
Ana Todorova (ana.todorova@orange-ftgroup.com), Research and Development Engineer, France Télécom-Orange

Summary: To build more precise models that are as close as possible to the reality of the relevant business, we often need to add constraints. To show
how to build useful and accurate domain models, this article explains the validation process of a domain model written in UML and OCL with IBM®
Rational® Software Architect and using the EMF validation framework.

Date: 15 Mar 2011
Level: Advanced
PDF: A4 and Letter (679KB | 17 pages)Get Adobe® Reader®

Activity: 4821 views
Comments: 0 (View | Add comment - Sign in)

 Average rating (5 votes)
Rate this article

Software modeling has traditionally been a synonym for producing diagrams. Most models consist of several squares and arrows. The information
conveyed by such a model has a tendency to be incomplete, informal, imprecise and, sometimes, inconsistent. Therefore, one of the goals of software
modeling is the creation of models that are accurate and conform to reality.

Requirements of an accurate domain model

Let's consider a genealogical tree as an example, starting with the diagram in Figure 1. The UML model of the genealogical tree shows that a Person is
defined by name and sex and can have or not have children, who are also Persons. Furthermore, it shows that one Person has exactly two parents, who are
also Persons. This means that the two parents can have the same sex, but that is genetically impossible. Therefore, this model is not accurate.

Figure 1. Genealogical tree model

A UML diagram, such as a class diagram, is generally not precise enough to provide all relevant elements of a business model. It certainly expresses
constraints through multiplicities, but other constraints often remain implicit. If we need to describe additional constraints for the model objects, these are
often described in a natural language. This practice has always shown that it leads to ambiguities.

Formal languages have been developed to avoid these ambiguities. The disadvantage of the traditional formal languages is that they are used by people
who possess a solid mathematical knowledge, but they are difficult to use for a modeling system. OCL (Object Constraint Language) was developed to
fill this gap. It's a formal language that remains easy to read and write. The expressions written in OCL can be interpreted without ambiguities by people
in different roles, such as an analyst and a developer, for example.

To create a precise and complete model, we need both UML diagrams and OCL expressions. Without the OCL expressions, the model would be severely
underspecified. The UML diagrams remain indispensable for the representation of classes and associations, but the OCL expressions would refer to
nonexistent model elements, because there is no way in OCL to specify classes and associations. It's only when we combine the diagrams and the
constraints that we can completely specify the model.

With regard to correctly specify the model of t genealogical tree represented in Figure 1, we need to add this constraint that specifies that the two parents
have different genders, or sexes:

Figure 2. Genealogical tree model with an OCL constraint

{ self.parents->asSequence()->at(1).sex <> self.parents->asSequence()->at(2).sex }

Page 1 of 10Produce more accurate domain models by using OCL constraints

7/19/2011https://www.ibm.com/developerworks/rational/library/accurate-domain-models-using-ocl-...

