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Abstract: Reliable story-pointing is key to sprint planning, staffing, and capac-
ity, but traditional methods rely on tacit knowledge that fades. Automating and
standardizing with Large Language Models reduces bias and improves predictabil-
ity. Models like GPT-4 decompose tasks, solve subproblems, and propose candi-
dates; however, closed architectures limit real-time data and expert input, sometimes
causing hallucinations. Fine-tuning helps but requires rich domain data and custom
weights, risking weaker generalization.

We tackle these issues by enhancing agile story point estimation with extended po-
sitional encoding and a multi-agent weighting scheme in the model head. In our
transformer model, we add a shared “knowledge pool” of specialized agents in the
environment, each trained on distinct facets of project data. Using 12,017 story
point records from 8 open source projects, we adopt an 80/20 train/holdout split;
from the holdout, 80% populates the knowledge pool and 20% is reserved for evalu-
ation. Our system uses hyperparameters (epochs = 3, batch_size = 16, learning_rate
=2 x 107°). The proposed architecture achieves 70.81% accuracy versus 42.62%
for standard BERT, a relative gain of ~ 66.1%, indicating that domain-specialized
agents with refined encoding substantially improve Large Language Model-based
estimations and support Al-assisted agile management.

Keywords: Transformer Architecture, Story Point Estimation, Multi-Agent System

1 Introduction & Literature Review

Effort estimation is a cornerstone of software project management, shaping both budgets and
schedules. In Agile development, teams mostly use story points (SPs) to measure the relative
effort or complexity of user stories within a sprint. However, knowledge from previous sprints
is often underutilized or lost. Accurate SP estimation remains vital, as a non-trivial share of
initiatives still fail or underperform due to overruns and management issues that trace back to
weak estimation practices [YDKE24, TMS23]. Conventional techniques such as T-shirt sizing
and bucket sorting depend on expert judgment during sprint planning. However, human-centered
processes are susceptible to anchoring, confirmation bias, and blind spots concerning underly-
ing complexity, which can lead to delays in schedules and budget overruns [HZL*24]. These
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limitations, namely subjectivity, variability across teams, and the need for better reuse of data,
have spurred methods based on machine learning (ML), deep learning (DL) and natural language
processing (NLP) [YDKE24].

Research on agile effort estimation with ML and NLP has progressed along two directions.
Early models at the project level emphasized historical or meta features, often neglecting se-
mantics of the story text. Later work at the level of stories turned to issue trackers and applied
similarity and regression to textual artifacts, showing that linguistic signals correlate with ef-
fort [PMD" 16, UMWBI14]. A major advance came with DL: Choetkiertikul et al. introduced
a model that learns the semantics of user story text and established a strong baseline for SP
prediction [CDT" 18]. Replication, however, shows that such gains can shrink across projects,
underscoring challenges of distribution shift and generalization [TMS23].

Transformer models expanded the methodological toolkit by effectively capturing long-range
dependencies and richer contextual information. Models oriented to code improved tasks that
combine code with natural language [FGT"20], while generative systems such as AlphaCode
demonstrated competitive programming capabilities through pipelines of sampling and filter-
ing [LCCa22]. Recent surveys document applications of Large Language Models (LLMs) across
software engineering tasks, including requirements engineering such as classification, summa-
rization, and inconsistency detection [HZL ™24, NRX " 24, FS25]. For sizing and estimation, vari-
ants of BERT tailored to the domain have supported early sizing with COSMIC [MAY25]. Build-
ing on this trend, transformer encoders now support SP prediction: Fu and Tantithamthavorn
proposed GPT2SP, which outperforms prior baselines and offers explainable rationales [FT23].
Hybrid pipelines that combine embeddings of transformers with regressors based on decision
trees also show promise [YDKE24].

Despite progress, heterogeneity across teams, domains, and toolchains hampers calibration
and robustness to distribution shift [HZL"24, YDKE24]. Studies grounded in designs of re-
lational databases with optimized learning pipelines indicate that careful curation of structured
project data can improve calibration and transferability across contexts [RY23]. LLMs may en-
code biases or overlook project-specific signals. In this setting, systems of multiple agents are
compelling: specialized agents can triangulate effort from complementary angles such as tech-
nical complexity, analogies to historical issues, and risks that cut across concerns. Ensembles of
learners consistently outperform single learners because of diversity [KMK12]. Estimation with
agents has already surpassed expert-centered methods and, crucially, institutionalizes the capture
of organizational knowledge [AA17, AAA19]. Recent studies that coordinate agents based on
LLMs across roles further suggest a synergy between LLMs and architectures of multiple agents
for robust and explainable SP estimation [JHC "24, BGW24].

We propose fusing LLM-based architectures with a multi-agent system to improve Agile SP
estimation. To our knowledge, this is the first integration of state-of-the-art LLMs within a
multi-agent framework for software effort estimation. We hypothesize that near-human under-
standing of user stories by LLM agents, combined with role-specialized collaboration and cross-
validation, yields more accurate and consistent SP predictions than traditional human methods
and single-LLM models. We evaluated real-world data against strong baselines and analyzed
agent interactions. The remainder of the paper is organized as follows: Section 2 details the
methodology of the proposed model. Section 3 presents the results together with their evalua-
tion. Section 4 concludes the paper and discusses avenues for future work.
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2 Methodology

The proposed methodology employs a multi-agent system architecture grounded in transformer-
based language models for agile story point estimation. As shown in Figure 1, the architecture
has two coupled modules.

(i) Classification model for learning from samples. The model consumes a dataset of his-
torical tasks (title, description, story point, duration, and success rate). The dataset, which is
derived from open source projects and produced by the authors, is publicly available on Zenodo
(version 1.0) [BN25]. The model builds a vector space of task language using Word2Vec and
produces, for each agent, a set of vectors of tasks together with a dictionary that maps agents to
their vector representations, success rates, and assigned story points.

(ii) Trial and reward procedure for adaptation. This module receives the agent vector dic-
tionary together with a new task. Agents evaluate the task, update their internal parameters
with feedback, and return a score. The system then aggregates the agent responses to produce
a Scrum-aligned story point assignment. The assignment and the observed outcome are written
back to the dataset, which closes the loop and continually improves future estimates.

Class_ification Model: Trial & Error & Rewarding

L learning from Samples | Procedure
Input Layer Dataset
Dataset - Agent-Vector
- Task Title Space
- Task Description (Dictionary)
- Story Point - New Task

- Duration
- Success Rate

Training Agents
- Task Evaluation
- Updating Model
- Feedback

Hidden Layer

Creating Vector
Space Using

Word2vec
- Task Title
- Task Description

Story point assignment (1)
Output

Preparing Vectors \
- Agent: a, Task: i
Vector Space:
Val_i..Val_n
Dictionary: Agent -> Vector
space, success rate, story
point

Figure 1: System model: Overview of the multi-agent transformer-based architecture for story-
point estimation. Agents interact via a shared aggregation environment to yield Scrum-aligned
outputs.

As seen in Figure 2, the environment runs a three-stage decision loop: a Weight-Generating
Scheduler plans which agents will update (mapping agent states a; — w;, where w; can be inter-
preted as update priority, probability, or step size); a Vote Encoder turns agent states into medi-
ated messages (a; — m;) for communication; and an Action Selector chooses the final action u
given agents signals and the context ¢ (abstractly, u = f(a;,m;,c)). Agents 1...n interact with
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the environment; an action is taken, and the resulting state/reward feedback (s,11,r;) affects the
rule by updating the scheduling weights and shared message statistics (e.g., attention-centroid
summaries). To promote stability and avoid oscillations, the scheduler normalizes {w;} (e.g.,
via temperature-scaled softmax), and the encoder limits message bandwidth by compressing m;;
both synchronous and asynchronous update modes are supported. Over time, the governing
rule %; (covering scheduling, encoding, and selection policies) is refined to maintain consistent
performance and align the multi-agent behavior with the task objective.

Inside of Training Agents
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| Weight Generator:-+---- W w Update
o1 - ‘
w2’
027a Weight Generator "~
w3 Weight
03 Assignment
y L Algorithm (k, v) :
Weight G t ]
'eight Generator Critic }‘7
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01// _|_. (01, m) — Action
Selector ut
02— )
I Action » |y2
5 Encoder — (02, m) —Selector
o g
__4 Action > |u3
Ls (03,m)  Selector
Encoder —>vote3 : :
Update
Environment
Agent

ol@ae

Result: What will be chosen?

Planning: Who will update? Encoding: What will be sent? i
agen
Weight w agents m 7 Action
agent>  Generating decision > E:f;ger ’ m  Selector|
Scheduler — )
fiwg:ai > Wi rienc:ai ->m; fiasi(ai, Mix C)

Figure 2: Agent training: Each agent fine-tunes BERT on assignee-specific data; attention clus-
ters are shared to transfer knowledge, and agents outputs are aggregated into the final story-point
prediction.
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As seen in Figure 3, each agent is fine-tuned on assignee-specific issues, shares attention-
cluster centroids via a knowledge pool, and contributes calibrated outputs to the final prediction.

Affects the rule

Agent 1 | e Agent n

Action is taken Affects the rule Action is taken
State, Reward State, Reward

* Environment

Figure 3: Agent knowledge pool: Internal environment for knowledge exchange, data routing,
and evaluation.

Central to the approach is the use of a pretrained transformer model, fine-tuned independently
by multiple agents, each specializing in data corresponding to a particular assignee within soft-
ware project datasets. The raw data, consisting of comma-separated values (CSV) files contain-
ing user story titles, textual descriptions, assignees, story points, and relevant temporal metrics,
is preprocessed by concatenating titles and descriptions into a unified textual representation to
enhance semantic richness. Numerical fields, such as story points and completion times, are
appropriately cast to floating-point for regression compatibility. To facilitate efficient and agent-
specific data management, the processed data is stored in an SQLite database, where each agent
accesses only its relevant subset.

Each agent encapsulates a distinct instance of a transformer scoring model, which accepts as
input a text sequence prefixed by a special [AGENT] token followed by the agents identifier and a
[SEP] token preceding the user story text. This explicit conditioning on agent identity enables the
model to capture the unique linguistic and contextual patterns inherent to different developers or
teams, thereby tailoring the estimation process to agent-specific idiosyncrasies. The architecture
further comprises a dropout layer applied to the pooled transformer output, followed by a fully
connected linear layer that outputs a scalar score predicting the story point value.

Dataset construction leverages a custom dataset class that performs on-the-fly tokenization,
padding, and truncation of input sequences to a uniform length of 128 tokens, ensuring efficient
batch processing. The regression target is the continuous story point value associated with each
user story. Model fine-tuning is performed separately for each agents dataset partition using the
AdamW optimizer with a learning rate of 2 x 10~>, optimizing mean squared error loss over three
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epochs with batch sizes of 16. This process balances sufficient adaptation to domain-specific
nuances while mitigating overfitting through dropout and weight decay regularization.

A key feature of the system is the exploitation of a transformer attention mechanism to facili-
tate inter-agent knowledge sharing. Each agent extracts attention vectors from the final layer of
the transformer, averaging across heads and tokens to produce dense embeddings that encapsu-
late meaningful semantic patterns related to story point prediction. These attention embeddings
are clustered according to predefined story point ranges (e.g., low, medium, high effort), and
cluster centroids are computed as prototypical attention representations. Agents exchange these
centroids with peers, generating embeddings through averaging, which guide subsequent fine-
tuning iterations on cluster-specific data subsets. This collaborative refinement enables agents to
transcend their local data biases, integrating broader contextual knowledge that enhances model
generalization and robustness.

For inference, each agent independently predicts story points for input user stories by for-
warding appropriately tokenized text through its fine-tuned model. The individual predictions
are aggregated via simple averaging to yield an estimate.

To ensure scalability, we implement a process-based parallel pipeline using Pythons multi-
processing (via Process/Queue, or equivalently concurrent.futures.ProcessPoolExecutor). Each
CSV, representing a distinct project or release, is dispatched to an independent worker pro-
cess that performs data loading, preprocessing, model fine-tuning, and evaluation. This design
achieves true parallelism by bypassing the Global Interpreter Lock (GIL), isolates resources
per job (e.g., one process per Graphics Processing Unit (GPU) when available), and prevents
cross-worker interference. Inter-process queues coordinate the task schedule and return results;
artifacts (model/tokenizer states, indices, logs) are persisted under a structured directory for re-
producibility and incremental training. We log training loss, evaluation metrics, and operational
events across processes.

This integrated methodology combines the strengths of transformer-based language model-
ing, multi-agent specialization, and collaborative attention-based knowledge sharing to provide
a robust and scalable solution for agile story point estimation, addressing inherent challenges in
heterogeneity, subjectivity, and variability of software project effort prediction.

3 Results

The experimental evaluation compares the proposed multi-agent, transformer-based story point
estimator against a baseline transformer system across eight open-source software projects: ap-
pceleratorstudio, aptanastudio, bamboo, clover, datamanagement, duracloud, jirasoftware, and
mesos. Accuracy is measured over three training epochs. Results are averaged over N=5 ran-
dom seeds (mean+SD). For the proposed vs. baseline comparison at Epoch 3, paired z-tests
across projects show the proposed system significantly outperforms the baseline (p < 0.001).
Both systems use the same train/holdout split and hyperparameters (epochs=3, batch_size=16,
learning_rate=2x107).

At Epoch 3, the full model (MA+KP+ExtPE) achieves 0.84 +0.02 accuracy (macro-averaged
across 8 projects; each project score is the mean over N=5 seeds). Removing MA, KP, and
ExtPE yields 0.77 (A= —0.07), 0.80 (A= —0.04), and 0.79 (A= — 0.05), respectively (A =
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ablation — full ). Using two-sided paired Wilcoxon tests on project-level, seed-averaged scores
(n=8), each ablation underperforms the full model (Holm-Bonferroni-corrected p,qj < 0.01
across 3 comparisons). The MA component shows the largest single-component effect (Hedges’
g=1.1). MAE and QWK likewise favor the full model (AMAE=—0.12,95% CI [-0.16,—0.08|;
AQWK= +0.09, 95% CI [0.05,0.13]). Learning curves (Fig. 4) indicate faster convergence,
measured as the epoch to reach 0.80 accuracy (proposed vs. baseline: 2 vs. 3, median). We report
95% bootstrap Cls (12k resamples) and provide parameter counts (with BERT base 124 M) and
inference latency (9.5 ms/sample;, batch=16, seq_len=256) to contextualize trade-offs. Headline
accuracies (70.81% proposed vs. 42.62% baseline; ~66.1% relative gain) are micro-averaged
across all projects and all three epochs.

Figure 4 shows that, across all projects and epochs, the proposed system is consistently higher:
accuracies lie around 0.58-0.72 vs. 0.20-0.42 at Epoch 1, around 0.69-0.84 vs. 0.32-0.53 at
Epoch 2, and around 0.79-0.92 vs. 0.42-0.62 at Epoch 3 (proposed vs. baseline, respectively).
The per-epoch absolute gap A, . = Ape? — Ab%¢ is consistently positive, typically +0.18—+0.35
(Epl), +0.20—+0.35 (Ep2), and +0.22—4-0.37 (Ep3), depending on the project.

1o Proposed System Accuracy Across Epochs Normal System Accuracy Across Epochs

Accuracy
o o o o o
» ) N @ i

I
>

o
w

o
N

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 1.00 1.25 1.50 175 2.00 2.25 2.50 275 3.00
Epochs (1, 2, 3) Epochs (1, 2, 3)

Figure 4: Accuracy across epochs for eight projects: proposed (left) vs. BERT-based model
baseline (right).

To make the end-of-training comparison explicit, Table 1 reports Epoch 3 accuracies per
project with absolute and relative improvements.

Both systems improve with training. The proposed system, however, starts higher and remains
higher at each step: it maintains a positive absolute advantage of about +0.20 to 4+-0.35 points at
every epoch across projects, and concludes training in the = 0.79-0.92 range versus ~ 0.42-0.62
for the baseline. Under an equal training budget (three epochs), these quantified gaps support the
conclusion that the multi-agent approach achieves consistently higher accuracy across diverse
projects.

Table 2 provides the per-epoch breakdown for all eight projects.

Removing KP (MA+ExtPE) drops to 0.80 (A = —0.04), removing ExtPE (MA+KP) to 0.79
(A = —0.05), and removing the MA head (KP+ExtPE) to 0.77 (A = —0.07)—the largest single-
component loss. Baseline BERT is 0.54 (A = —0.30 vs. full). Thus, MA contributes the most,
while KP and ExtPE provide additional, complementary gains; all improvements over ablations
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Table 1: Epoch 3 accuracy per project (proposed vs. baseline), absolute gap A, and relative

improvement.
Project Proposed Baseline A Rel. Imp. (%)
appceleratorstudio 0.81 0.51 +0.30 58.8
aptanastudio 0.79 0.48 +0.31 64.6
bamboo 0.72 0.42 +0.30 71.4
clover 0.89 0.57 +0.32 56.1
datamanagement 0.84 0.55 +0.29 52.7
duracloud 0.82 0.53 +0.29 54.7
Jjirasoftware 0.91 0.60 +0.31 51.7
mesos 0.92 0.62 +0.30 48.4
Median 0.83 0.54 +0.30 53.7

Table 2: Accuracy across epochs for eight open-source projects: proposed vs. baseline (A =

Aprop - Abase)-

Project Proposed Baseline A
Epl Ep2 Ep3 Epl Ep2 Ep3 Epl Ep2 Ep3

appceleratorstudio 0.60 0.70 0.81 0.30 0.41 0.49 +030 +0.29 +0.30
aptanastudio 0.58 0.67 0.79 0.28 0.38 0.44 +0.30 +0.29 +0.31
bamboo 0.50 0.62 0.72 0.20 0.32 0.37 +0.30 +0.30 +0.30
clover 0.65 0.77 0.89 0.35 048 0.51 +030 +0.29 +0.32
datamanagement  0.62 0.72 0.84 0.33 0.44 0.55 +0.29 +0.28 +0.29
duracloud 0.60 0.70 0.82 0.31 042 053 +0.29 +0.28 +0.29
jirasoftware 0.70 0.84 091 043 052 0.60 +030 +0.32 +0.31
mesos 0.72 0.86 092 048 0.54 055 +0.30 +0.32 +0.30

are consistent across projects and significant (p < 0.01).
Table 3 at epoch 3 (project-wise mean, N=5 seeds), the full model (MA+KP+ExtPE) reaches

0.84 accuracy.
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Table 3: Ablation at Epoch 3 (project-wise mean accuracy).

Variant Accuracy A vs. Full
Full model (MA+KP+ExtPE) 0.84 -

— Knowledge Pool (MA+ExtPE) 0.80 —0.04
— Multi-Agent Head (KP+ExtPE) 0.77 —0.07
— Ext. Positional Encoding (MA+KP) 0.79 —0.05
Baseline BERT transformer 0.54 —0.30

These findings demonstrate that the proposed multi-agent approach not only improves absolute
predictive accuracy but also accelerates convergence during training. The observed performance
gains have practical implications for agile software development, enabling more accurate and
efficient sprint planning through improved effort estimation. In summary, the empirical evidence
strongly supports the efficacy of incorporating multi-agent collaboration and transformer-based
language understanding into story point estimation, paving the way for more adaptive and accu-
rate agile project management tools.

4 Conclusion and Future Work

This study presented a novel multi-agent architecture leveraging transformer-based language
models to improve agile story point estimation through agent-specific fine-tuning and collabo-
rative attention-based knowledge sharing. The empirical results demonstrate significant gains
in accuracy and convergence speed compared to traditional monolithic approaches, highlighting
the promise of multi-agent deep learning systems in software effort estimation.

There remain several avenues for future exploration to further enhance and generalize this
framework. First, integrating more sophisticated ensemble aggregation strategies beyond simple
averaging, such as attention-weighted fusion or learnable meta models, may yield improved
predictive performance and robustness. Additionally, extending the set of specialized agents to
cover a broader range of software roles, domains, or cross-project knowledge could enhance
adaptability in heterogeneous development environments.

Future research could also investigate dynamic agent formation and evolution mechanisms
that respond to changes in team composition or project scope, enabling continuous learning and
adaptation over the software lifecycle. Incorporating explainability methods to elucidate agent
decision processes and attention patterns may improve stakeholder trust and facilitate model
validation in practical Agile settings.

From an infrastructure perspective, optimizing distributed training and inference pipelines for
large-scale deployment across multiple projects and organizations remains an open challenge.
Exploring federated learning paradigms with privacy-preserving mechanisms could enable col-
laborative learning while respecting organizational data boundaries.

In conclusion, the proposed multi-agent transformer-based system offers a scalable, effective
approach to agile story point estimation, bridging natural language understanding with domain-
specific expertise through collaborative learning. This research lays foundational groundwork
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for future advances in intelligent, adaptive software engineering tools that support Agile teams
with precise and transparent effort estimations. The continued refinement and expansion of this
paradigm promise to contribute substantially to the automation and reliability of software project
planning and management.
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