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Abstract: Automation has become an important aspect of effective and rigorous
experimental research work, particularly in physics. Among the diverse automa-
tion platforms, Python stands out with its large repository of open-source scientific
software for instrument control and data analysis. However, despite considerable
effort from the research software community to unify multi-instrument control (also
known as instrument orchestration) and to make it laboratory-agnostic, there has yet
to be a strong consensus on a universal package that is easily adaptable. We con-
textualise this issue by discussing the underlying barriers that we have encountered
within the experimental physics community, such as the unfavourable circumstances
for software development, and the disparity in programming skills amongst physi-
cists. A sustainable way forward could be specialised but well-maintained software
repositories within each research group. In that spirit, we present our experiences as
case studies on building software for experiments and share key coding considera-
tions that may be helpful to other physicists.

Keywords: Python, Modularity, Scientific Instruments, Orchestration, Automation,
Data Acquisition, Data Visualisation, Interfacing, Hardware-Software Interaction,
Graphical User Interface, Code Sustainability, Experimental Physics

1 Introduction

Rigorous measurements form the cornerstone of experimental physics research. As experimental
setups grow in complexity, so does the need to automate data collection and analysis to ensure
the repeatability of the results. Automation in this form likely developed organically in many
different laboratories simultaneously and lends itself particularly well to labour-intensive and/or
repetitive tasks [Ols12].
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Bottom-Up Python Software Development in Experimental Physics

Since such processes often involve the automation of equipment and instruments, this is
also sometimes called instrument orchestration [RFG+22] or experimental control systems
[GFJ+04]. In its most basic form, automation involves some way of extracting data from a sensor
or measurement device in a way that allows the data to be collated without the manual labour
of writing the data down. For example, if an instrument only has a digital display output (e.g. a
digital multimeter), one could use a webcam and some image-recognition software to extract the
readout to a computer for processing. Figure 1 (left) depicts an example of a simple but func-
tional setup being used in field research conducted in the Arctic [NP24], juxtaposed with Figure 1
(right), which depicts an advanced experiment control system at CERN/ATLAS experiment used
to collect and process the large amounts of data generated [CER25].

Despite the importance of such automation, the authors note that in the publication of physics
research works, the associated software is usually relegated to supplementary material or not
published at all, available only by explicit request to the authors. Furthermore, often only the
code used for data analysis and not the code for data collection would be provided. This is
perhaps similar to how one would usually not publish the alignment process of an optical setup
used to obtain a measurement.

The need for better software in instrument orchestration is not new [Sun23]. It remains com-
mon to encounter convoluted, cryptic code that somehow is still running the same experiment
after a decade. Since the code can be so difficult to understand, maintenance and continued
development are put off as much as possible. A survey by [Het18] reports that 21% of people
developing software in research have never received any form of training in software develop-
ment. In that respect, we hope that this contribution can provide some clarity, in particular when
writing custom software, thereby helping to improve the reproducibility [KCAC20] and the reli-
ability [Het14] of software and its results, especially with respect to automation and instrument
orchestration.

GoPro

GPS
Digital Display 

EM Sounding Measurement of
Snow-Ice Thickness

Figure 1: (Left) A rudimentary form of instrument orchestration: A GoPro camera is depicted
here being used to record data from the digital display of a Geonics EM31-ICE for snow-ice
thickness measurements. The footage is matched to GPS data to build a location-resolved data
series [NP24]. Illustration adapted from [Fou24b]. (Right) In comparison, an advanced experi-
mental control system at CERN/ATLAS, the Trigger and Data Acquisition system, which is used
to pick out distinguishing events and reduce data flow [CER25]. Photo from [CG20].
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Being among the few (if not only) members of the experimental photonics community at the
deRSE24 conference, we were motivated to share, with this contribution, our observations and
experiences writing and designing software in our community with the larger RSE and experi-
mental physics community.

1.1 Problem Statement and Goal

There is a large diversity of solutions in experimental physics that address the complexity of
instrument orchestration, with some research groups requiring highly niche implementations.
While some turn to hardware-based solutions (analogue or digital electronic circuits, FPGAs,
etc. such as [TZP21, Jä24]), software-based automation remains a popular choice among ex-
perimentalists. Using software lowers barriers of entry in terms of equipment and the necessary
technical knowledge required to set up and operate the equipment. We make the following ob-
servations regarding building custom software as experimental physicists:

1. Python is Ubiquitous in Physics: Being one of the most popular programming languages
in the scientific community [HBC+22], most people entering research already have some
Python programming knowledge.

Python also stands out as an open-source, cross-platform language with a vibrant developer
community and a large repository of useful scientific packages [Jtv15]. Furthermore, the
class-based structure of Python maps particularly well to the way that physicists decon-
struct research problems, making it an intuitive programming language to work in [SH15].

2. LabVIEW is Popular but has Strong Disadvantages: LabVIEW by National Instru-
ments has been a particularly long-standing and popular program within experimental
physics for hardware automation. It utilises the concept of data-flow instead of imper-
ative programming used in Python.

While LabVIEW is designed for instrument orchestration [Kod20], it is closed-source and
uses a graphical (non-textual) programming language, making version tracking/control
difficult (also cf. Subsection 4.4). LabVIEW programs are also difficult to share and col-
laborate on: The lack of forward compatibility between different versions of LabVIEW
[Han] combined with the expensive proprietary licensing [Nat24] can also increase the
barriers to creating a sustainable LabVIEW ecosystem. Complex data analyses that can be
quickly implemented in Python would require a highly complicated LabVIEW program.

Hence, while LabVIEW can be useful in some situations (especially when it comes to
rapid hardware deployment and visualisation), it could result in substantial overhead in
software management that disincentivises sustainable software.

3. A Single Standard is Difficult: As shown by the continual appearance of independent
drop-in Python packages over recent years [RFG+22, KCAC20, Jtv15, Web21], there has
not been a consolidated standard and community on instrument orchestration in experi-
mental physics. This can be broadly attributed to the diversity of research goals, experi-
ment layouts, and equipment availability.
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With each lab’s infrastructure being unique, custom software tends to be built organically,
in other words bottom-up, with automation code for unique individual experimental seg-
ments being developed before any high-level orchestration planning is done. We believe
that aiming for a one-size-fits-all standard is not realistic within the research context.

4. Programming Capabilities Vary: There is an intrinsic selection bias in published code,
where researchers who publish software suites tend to be of the minority that already pos-
sess specialist resources and knowledge to package and maintain a healthy code ecosystem
(e.g. a Research Software Engineer, or RSE for short). It is thus not obvious that these
successful examples can be easily adapted and maintained for use by other researchers.

The difficulty in retaining knowledge of experimental control code infrastructure is also
well-known given the high turn-over rate of academic staff [Web21]. Without a proper
handover, a group may lose expertise in both the usage and the design of custom Python
packages. While some groups find it sufficient to pass down only the high-level usage
of Python packages, this could lead to issues with debugging and adapting the code in
the future. This can quickly become unsustainable if basic Python literacy is not ensured
across generations of researchers.

5. Sustainable Research Software in Physics is Not Incentivised: As mentioned, the lack
of recognition of the work done on custom research software for generating and processing
important scientific results is an ongoing issue in academia [Het16]. This is further com-
pounded by inadequate software training amongst researchers despite the need for research
software [Het18]. Anecdotally, explaining software used is rarely required (but potentially
allowed) in physics journal submissions or their supplementary materials, as it is the ana-
lysis of the experimental results that reveals novelty in the work which then determines
acceptance. We believe this situation to be a major factor for poor coding practices and
thus unsustainable software in experimental physics.

With this in mind, this contribution aims to provide recommendations for building a sus-
tainable code ecosystem for an experimental physics laboratory while recognising the practical
circumstances of coding as a physicist. We wish to address physicists with basic Object-Oriented
Programming (OOP) understanding who do not necessarily have a software engineering back-
ground or access to the services of an RSE. While we do mention Python packages, including
our own, they are only examples of how to incorporate desirable features: Our focus is not
to prescribe the adoption of any particular package and instead to encourage our audience to
take certain design inspirations while developing their code, or at the very least, make writing
sustainable code seem less daunting than it might seem at first.

In Section 2, we look at the tools and references that can guide us when we build our own
software. Section 3 then presents the authors’ experiences developing software in experimental
photonics and quantum optics to provide some recommendations for physicists trying to build
and maintain software ecosystems for their groups. Finally, Section 4 lists some key design
considerations that we have distilled from our experiences and found most helpful, followed by
the conclusions in Section 5.
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2 Resources and Good Practices for Building Software in Experi-
ments

In this section, we present the available resources we utilise for both implementing and taking
inspiration for our software. These concepts and tools will also be mentioned repeatedly in the
following sections.

2.1 Device Interfacing Standards

Data acquisition from scientific instrumentation can often be characterised by rudimentary meth-
odologies, as illustrated in Figure 1. Indeed, the utilisation of decades-old equipment incorporat-
ing obsolete technologies remains prevalent in contemporary experimental configurations. This
is partly explained by budgeting considerations within each research group, where not all equip-
ment are given equal priority for upgrades.

Fortunately, the standardisation of hardware interfacing protocols has mitigated some of these
challenges. Two predominant standards have emerged: the Standard Commands for Program-
mable Instruments (SCPI), introduced in the 1990s [SCP99], and the Virtual Instrument Soft-
ware Architecture (VISA), proposed in 1995 [VXI24]. SCPI constitutes a set of standardised
commands instruments can recognise, while VISA facilitates device intercommunication irre-
spective of the underlying physical connections, such as USB or ethernet.

The establishment of these standards, in conjunction with the development of Application Pro-
gramming Interfaces (APIs), has significantly enhanced the efficiency of software development
for instrument control. When designing custom software for laboratory equipment communic-
ation, we often first seek to leverage these device-interfacing standards to aid the development
process and future-proof software as much as possible.

2.2 Good Practices: FAIR Principles

The FAIR Data Principles constitute a framework originally designed for enhancing the long-
term reusability of scholarly data. These guidelines were created by a diverse working group
representing both private and public sectors, with particular emphasis placed on automating data
retrieval via standardised data management practices [Wil16]. The idea of “FAIRness” has since
been adapted for research software by the FAIR for Research Software (FAIR4RS) working
group, with the goal being to similarly enhance the longevity, access, and reusability of software
used to produce scientific results [BCK+22]. We strongly resonate with FAIR4RS’s mission and
indeed find FAIRness a useful benchmark for evaluating the sustainability of our software:

• Findability: This refers to the ease with which software can be located. Key practices
include assigning unique identifiers to every package/component version and publishing
software in recognised repositories (e.g., GitHub, GitLab).

• Accessibility: The ability to retrieve the software from a standard communication pro-
tocol. This involves providing authentication and authorisation protocols where necessary,
comprehensive installation instructions, and persistent metadata even when the software is
no longer available.
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• Interoperability: This pertains to the software’s ability to exchange data and integrate
with other systems. Key considerations include using well-documented file formats, mod-
ularity in software design, and providing clear user programming interfaces.

• Reusability: Reusability in software extends beyond accessibility, emphasising the ability
to adapt the software for different contexts. Practices promoting reusability include thor-
ough documentation of code functionality and underlying algorithms and providing a clear
usage license.

2.3 Open-Source Package Example: Bluesky

The Bluesky package [KCAC20] is an example of a state-of-the-art and open-source instrument-
ation package that addresses many of the challenges inherent in scientific data acquisition and
instrument control. Originally developed for the synchrotron science community at the National
Synchrotron Light Source II1, this open-source Python package demonstrates sophisticated cap-
abilities and has been adopted by several other facilities [ACCR19a]. We note the following
attractive features:

• Abstraction and Modularity: The package implements several abstraction layers, both
in instrument orchestration and hardware interfacing. In particular, the latter is achieved
through a sister package called ophyd, as part of the larger experimental control ecosystem
at NSLS-II. By having ophyd handle all hardware-level specifics, Bluesky can be agnostic
to the type of equipment being deployed in an experiment. This allows similar experi-
mental control scripts to be used across different setup configurations.

• Extensibility: Bluesky is built to be compatible with the hardware interfacing solutions
provided by various supporting packages, such as ophyd and instrbuilder. These pack-
ages in turn leverage device standards within the high-energy physics community, namely
EPICS and SPEC [ACCR19b] respectively. This lowers the barrier of entry for researchers
to contribute more equipment drivers to the ecosystem.

• Hardware Emulation: The package offers hardware emulation capabilities for testing
code without the physical hardware being available to the programmer. Given a large-
scale experiment comprising thousands of devices (such as in particle accelerators), this
can be a particularly useful feature.

On the other hand, in the context of experimental physicists trying to develop bottom-up solu-
tions, Bluesky’s feature-rich design may also present certain challenges:

• Complexity: The package’s extensive feature set and advanced architecture may present a
steep learning curve for new users, potentially limiting its full accessibility to researchers
without strong programming backgrounds or the assistance of an RSE.

• Specialisation: As with many similar open-source instrument orchestration packages,
Bluesky was originally designed for a specific community within physics. Hence, the

1 NSLS-II, at Brookhaven National Laboratory, USA
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package may have inherent design choices that are less optimal for other scientific do-
mains. For example, the aforementioned device standards specifically cover equipment
commonly found in synchrotron facilities.

• Potential for Over-Engineering: The impressive scope of Bluesky may in fact exceed
the needs of many individual researchers or smaller labs, potentially introducing unneces-
sary complexity for simpler experimental setups. The layers of abstraction, while offer-
ing versatility in software design, may also cause significant computational overhead for
laboratories without suitably performant computers.

Needless to say, Bluesky is a mature and extremely capable package for instrument orchestration,
and also follows FAIR principles closely. Similar case studies include NICOS, which is also
seeing rising cross-facility usage [MLZ21]. We see these packages as model examples showing
how a comprehensive (albeit resource-intensive) instrument orchestration software suite can look
like, even if research groups cannot import them directly.

3 Case Studies in Experimental Physics

In this section, we explore two projects that the authors have developed in experimental phys-
ics. These projects emerged organically in response to specific research needs within groups
of modest sizes, and their development followed an iterative, bottom-up approach. In the next
section, we aim to examine the concepts and considerations that were the most useful in helping
our projects to be more sustainable and achieve their goals.

3.1 Nanosquared: Automated M2 Laser Beam Quality Measurement Package

Characterisation is a crucial part of experimental physics. Proper characterisation ensures that
experiments are accurate, results are reproducible and the underlying phenomena could be un-
derstood as much as possible.

In laser development, the M-squared
(
M2

)
beam quality factor is commonly used to character-

ise the quality of a laser beam. This factor provides a simple empirical way to assess the laser’s
effectiveness in various applications [Pas]. Since so many imperfect properties of the laser beam
are summarised into this one factor, it provides a quick way to measure the quality of the laser
across different laser technologies and use cases, albeit not without its downsides. The typical
way of measuring the M2 of a laser source involves [ISO21]:

1. Taking at least 10 beam-width measurements around the beam waist of a focused laser
beam, and

2. Fitting the data points (beam-width against measurement position) to the Gaussian beam
propagation equation with M2 as one of the fit variables.

This was the context behind nanosquared2, a package developed by one of the authors (Y. Sun)
over the course of a year at the experimental laser physics group Attoworld at the Max-Planck-
Institute of Quantum Optics (MPQ) in Garching, Germany. A series of custom short-pulse lasers
2 https://github.com/sunjerry019/nanosquared, ∼ 9200 lines of code, ∼ 5 users within MPQ.
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were being developed for use in the group’s longer-term research campaigns, and a few key
challenges arose:

• The development of numerous lasers and amplifier setups necessitated frequent perform-
ance characterisations; however, these repetitive measurements, as described above, quickly
became tedious and labour-intensive when done manually, taking precious time away from
physics research.

• No affordable commercial solutions were readily available for the lasers’ uncommon wave-
length (mid-infrared).

• The specialised beam profiler that was used in the group for beam-width measurement had
a closed-source interfacing driver and only supported automation using a long-deprecated
software framework called ActiveX. This was a particularly challenging obstacle even for
physicists with programming experience, given the obscurity of ActiveX amongst modern
instruments in experimental physics.

• The fitting process for M2 is very sensitive to the input data and the initial guesses of the fit
parameters due to the complex parameter space. Automating such a process would stand-
ardise the measurement process, thus increasing the reproducibility of the measurement

Hardware-Interfacing Classes

Problem Specific Code

Helper 
MixIn / Interface

Configuration 
Classes Pure Software Classes

Camera
<abstract>

Stage
<abstract>

Controller
<abstract>

NanoScan WinCamD

SerialController

GSC01

Legend In Python
Subclass inherits Superclass

Class MixIn

GSC01_Stage

SGSP26_200

ODRFitter OCFFitter

MsqODRFitter

Measurement

CLI AppUserscript0

MsqOCFFitter

MsqFitter
<abstract>

Logger
<MixIn>

Fitter
<abstract>

class Subclass(Superclass)

class Class(MixIn)

Class A Class B eg. B.A = A()

includes

used by
configures

UserscriptN...

Figure 2: Modules of the nanosquared package. Classes could be conceptually categorised
into hardware-interfacing, pure software, configuration, and helper. The mix-in class Logger
has been put at the top so that inheritance always goes in the same direction graphically.
Userscript0..N may be created that makes use of any of the individual modules below.
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Python
(Module)

pywin32
Library

ActiveX COM
Object

Vendor Software
(COM Interface)

NanoScan Device
(Hardware)

DID NOT WORK

WORKING PATH

imports calls controlsinterfaces
with

Python
(Module)

pythonnet
Library

Custom C# DLL
(Marshalling Layer)

ActiveX COM
Object

Vendor Software
(COM Interface)

NanoScan Device
(Hardware)

imports calls controls

interfaces
with

loads

Python
(Client)

calls
methods of

class NanoScan camerainherits

Figure 3: Software component interaction diagram of a specific hardware-interfacing work-
around in the nanosquared package, with the call stack represented from left to right. The
ActiveX COM module was incompatible with Python (this is represented by the red shaded
box in the top path). As a result, an extended interfacing path through a C# DLL was necessary
for Python to communicate with the NanoScan beam profiler device.

process. Furthermore, automation would also improve precision by increasing the number
of samples that can be taken for the measurement, thereby reducing its uncertainty.

Naturally, software for the fitting workflow already exists in the group for manual M2 meas-
urements, so the task was to expand upon this to automate the measurement and fitting process.
Existing code also acted as a baseline, allowing us to verify that the new workflow generated res-
ults that were compatible with earlier methods. The package was largely conceptually separated
into the following components, with details depicted in Figure 2:

• Hardware interfacing (translation stages, beam profiler, etc.)

• Configuration classes (storing device model-specific settings)

• Pure software components (data processing and fitting)

This separation was done with a focus on modularity and separation of concerns. Each com-
ponent could be and was independently developed and tested in experimental runs. The division
of the code into these distinct components was also intended to establish clear, measurable mile-
stones, facilitating progress tracking and sustaining project momentum.

Considerable focus was also placed on ensuring abstraction so that we describe what the code
should do and not how it should do it. When properly implemented, this abstraction neatly hides
much of the complexity inherent to interfacing software and hardware.

The hardware-interfacing classes are where this abstraction had the biggest benefit. As more
precise measurements were required, the DataRay beam profiler [Inc24] that was initially used
had to be changed to a NanoScan scanning slit beam profiler made by Ophir Optics [Ltd24].
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Thanks to the abstracted “beam profiler” class that both devices share, the switch between
device/manufacturers was simple, requiring no high-level changes to the larger experimental
control program.

While developing the code for this change, we realised that the automation of the NanoScan
beam profiler was only possible through a type of ActiveX COM Object. Unfortunately for Py-
thon, this type of ActiveX COM Object was not supported by popular libraries such as pywin323.
To resolve this, we opted to use C# (which supports this object type) as an interpreter between
Python and the ActiveX COM Object that ultimately talked to the beam profiler. This is depic-
ted in Figure 3. With abstraction, we were able to enclose this inelegant technicality concisely
within low-level modules.

Alongside hardware-interfacing classes, configuration classes were created to manage mul-
tiple devices of the same type with the similar communication methods but different hardware
specifications. These configuration classes enable flexible handling of device-specific paramet-
ers. For instance, devices like linear translation stages that use the same controller but have
different ranges could be easily swapped within the system. This is accomplished by instantiat-
ing the appropriate device class (e.g., StageB() in place of StageA()) without altering the
underlying communication logic.

The organisation of the pure-software fitting components of the project can be understood as
the separation of fitting algorithms and models. This separation ensures that the various fitting
strategies (classes) can be reused in the future to fit different models without requiring extensive
modifications to the underlying code, which often remains the same anyway. Similarly, the com-
ponent representing the model being fitted may be used with alternative fitting methodologies
if necessary. This modular approach emerged due to disagreements over the choice of fitting
method, as it was observed that the choice significantly influenced the final results.

Finally, a mix-in helper class Logger provides all classes with an easy and unified way
of logging through the self.log(...) method. Leveraging Python’s support for multiple
inheritances, this helps to reduce code maintenance overhead and simplifies future extensibility
to change logging behaviours, such as logging to a file instead.

These modules for the different components of an M2 measurement setup were then brought
together into a full Python package for the research group. A pleasant side effect of this project
was that several existing and legacy stand-alone modules for specific instruments were integrated
or refined in the process, which encouraged code reuse and facilitated code maintenance.

The Python package was then given a front-end in the form of a command-line interface
(CLI) so that our colleagues could easily do a quick M2 measurement without writing new code.
Testing the software within our group, we concluded that the CLI was more than sufficient for
our needs. We thus opted, contrary to our original plan, not to develop a graphical user interface
(GUI) as it would have been unnecessary.

3 The ActiveX COM object provided by the vendor had functions where parameters were passed-by-reference and
not passed-by-values. This form of function call is not supported by Python, thus preventing direct interfacing.
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Figure 4: Concept illustration of liveplotter’s operation. LivePlotProcess interfaces with all
graphical objects and is contained within a sub-process, while LivePlotAgent exchanges instruc-
tions and data with other modules under the main Datalogger class using thread-safe queues.

3.2 Liveplotter: Generalised Live Data Visualisation Module

Live visualisation of data in experimental physics is a crucial tool that allows researchers to
quickly identify desired signals or unexpected behaviours without post-processing the data. This
immediate feedback enables on-the-fly adjustments to setup parameters and monitoring, thus
improving work efficiency.

While some instruments already possess data displays by default, such as oscilloscopes and
spectrometers, they tend to be expensive and specialised. Physicists often need to monitor live
raw data from a variety of devices as well as combined data from multiple devices. This was the
context behind liveplotter4, a generalised live plotting module developed by one of the authors
(M. Wu) [Wu24] over the course of a year to facilitate experiments in the Quantum Measure-
ments Laboratory (QMLab) at Imperial College London. To perform quantum optics experi-
ments, QMLab initialises several instruments at once with custom drivers all written in Python,
which allows multi-instrument orchestration to be done from a single command line interface
(CLI) within a Python virtual environment. This mode of operation offers a few key benefits,
such as rapid code prototyping and versatility to equipment changes, but imposes some require-
ments on a live plotting solution:

• Device-Agnostic: With live data coming from many sources that are also constantly chan-
ging, a useful live plotting module must be generalised for several data formats.

• Asynchronous: As QMLab uses Python for live experimental control as well, the live
plotting module must collect and display data as a background (non-blocking) process.

• Drop-In: Since experimental setups rapidly grow in complexity and change configura-
tions, it was deemed impractical to develop and constantly adapt a GUI for experimental
control with live plotting GUI elements. The live plotting module thus needs to behave
like a drop-in module that can be used with a CLI.

4 https://github.com/metrosierra/liveplotter, ∼ 600 lines of code, > 10 users from QMLab and presently QTech.
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Figure 5: Desktop demonstration of using liveplotter as a module within a Python interactive
console. As seen in the window on the left, the user may call functions from a “Datalogger” ob-
ject to begin data collection, before opening asynchronous and interactive live plotting windows
displaying the respective live data. The user may continue using the command line interface for
the experiment while the live plots run in the background.

A popular plotting tool for data visualisation in Python amongst physicists would be Matplot-
lib. It is a powerful package that offers virtually all types of static scientific plots with attractive
styling choices. Indeed, Matplotlib’s animated plot functions were implemented for the first ver-
sion of liveplotter. However, these functions quickly proved to be severely limited in refresh rate
and scalability with data size. In contrast, the PyQtGraph package excels in live plots by using
efficient data array manipulation sub-packages and PyQt5 (a Python GUI package) to handle
graphics rendering in both two and three dimensions. While this alternative is clearly optimised
for live plots, some obstacles were faced during development:

1. Early forms of the module required users to instantiate liveplotter for each live plot win-
dow and within separate threads. This allowed asynchronous plots that were fast and
interactive, but each module instance was in fact a PyQt5 GUI application in itself. The
result was significant overheads in the module back-end and only a maximum of three live
windows could be run together on a standard desktop without significantly slowing down
other processes.

2. The solution to this was to leverage available GUI methods provided by PyQt5. We now
instantiate live plot windows as simpler QWidget objects that are in turn managed by a
unified QApplication instance. While this design was more scalable and resource-friendly,
it undermined asynchronicity as QApplications were designed to be run in the main thread
of the program [The], which prevented liveplotter from being a non-blocking and drop-in
module within a CLI.

To avoid switching entirely to an event-driven programming design (such as waiting for peri-
odic time-outs to perform actions) usually used for PyQt5 GUIs but not QMLab’s software,

12 / 20



ECEASST

liveplotter utilised the multiprocess package in Python to enclose all graphical methods within
a sub-process. As shown in Figure 4, LivePlotProcess is the object running the QApplication
within a sub-process. A sub-module in the main process, LivePlotAgent, then acts as an in-
termediary between the main instrument orchestration program (called Datalogger in this ex-
ample) and LivePlotProcess, exchanging instructions and data in a thread-safe manner using
inter-process queue methods. PyQt methods traditionally meant for a full GUI front-end inter-
face, such as the “worker” QThreads that regularly update the live windows (QWidgets), were
contained in sub-classes within the module.

With this mode of operation, the Datalogger, which represents the CLI experimental control
session and handles the various instrument interfaces, may continue to be used to acquire and
process data on-the-fly while live plots run in the background using the optimised PyQtGraph
back-end. The Datalogger simply updates variables periodically with new data and live plot
windows correspondingly update their visualisations. Figure 5 depicts a typical experimental
control session in which a Datalogger is instantiated in a Windows Powershell console: liveplot-
ter becomes an object instantiated by Datalogger and is used to generate several types of live
visualisations, such as timing correlation histograms and rolling windows of photon count rates.

4 Useful Considerations for Software Design and Maintenance

We have presented two distinct examples in experimental physics where considerable effort was
spent on custom and lab-specific software solutions tackling specific problems. These examples
demonstrate how bottom-up software development in physics could look like, a field in which
software development is accorded lower rigour. This section hopes to draw parallels between
our experiences building our software and point out a few coding principles that were beneficial
to us in keeping our code user-friendly and sustainable.

4.1 Abstraction

One of the key principles we realised early on was to ensure that the code was accessible and easy
to use. Thus, abstraction was a natural way to achieve this [CS07]. Conceptually, this amounts
to encapsulating complex operations behind a simple and consistent interface, which users can
use as a “black box”. Users can easily see the functionalities available, but not what the back-end
might look like. While the contrary is possible, the focus here lies in using the software instead
of understanding the software to an excessive degree, which may only be useful when debugging
the software. Since only the relevant parameters need to be adjusted by the user, this has allowed
us to make our software more accessible to our colleagues.

This also proved especially useful in the nanosquared project, as we have seen in Subsec-
tion 3.1 (nanosquared). Abstraction allows us to “hide” inelegant workarounds and the inevit-
able messiness of experimental setups, enhancing both (re)usability and maintainability of the
codebase. In other words, abstraction facilitates the deployment of devices that may have very
different control technologies but are conceptually the same in functionality.

It was also highly rewarding to reach out to device manufacturers for help. In the process of
building code to interface with the beam profilers, they provided valuable example code and ex-
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pertise of their products despite the age of the product model. We thus encourage our colleagues
to reach out to external experts/vendors as much as possible to help reduce development time.

4.2 Modularity

Although closely associated, modularity and abstraction represent distinct concepts: the over-
arching goal of modularity is the separation of concerns, and this can come in many forms
[McC03].

Python, being a multi-paradigm language, embraces different forms of modularity, supporting
functional programming, procedural abstraction, and object-oriented design. However, Python’s
core remains deeply object-oriented [Fou24a], and the way it handles packages reflects that.
Consequently, we found that the most natural way for us to achieve modularity was through the
use of classes and objects to separate code. Since experiments usually involve multiple instru-
ments working together, mapping physical equipment to virtual objects in code is a convenient
technique when programming experimental control software.

As Figure 6 demonstrates, clearly delineated modules representing distinct entities create a
mix-and-match system that greatly simplifies code composition. With lower-level hardware-
interaction code boxed up and abstracted away, higher-level composed scripts using multiple
modules also become more readable and intuitive. These reusable individual components form
the centrepiece behind complex instrument orchestration systems and increase code reusability
and longevity. Indeed, nanosquared (cf. Subsection 3.1) was conceptually divided into two
groups of modules: hardware-interfacing objects and virtual, pure-software objects such as data
fitting functions. Within each group, there are individual modules that use inheritance to create
a structure that allows extensibility [Sun23].

This extensibility can be very useful as a concept for an experimental setup. For example,

Experiment Scripts

Experiment
Script 1

Experiment
Script 2

...

Hardware Interfacing Modules

Device 1

controls

Device 1
Interfacing

Module

Device 2

controls

Device 2
Interfacing

Module

...

Data Analysis Modules

Data Analysis
Module 1

Data Analysis
Module 2

...

calls methods of
uses

calls methods of
usesuses

calls methods of

Figure 6: Modularity enables a mix-and-match system and encourages code reuse. Clear mod-
ules representing distinct entities greatly simplify code composition.
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an experiment might use two different types of oscilloscopes A and B, but since they are both
oscilloscopes, one would likely obtain the same type of information from them. This is when one
would use a parent oscilloscope class that provides the data acquisition methods, and two child
classes A and B that contain device-specific code (implementations) for the actual acquisition of
the data from the device. From our experience, we found that this form of class inheritance to
be particularly effective for factoring out common methods amongst a set of classes and provide
hierarchical order to your code [SH15].

Effective modularisation (with abstraction) in this form is an excellent exercise of continuously
grouping similar modules. This helps build new modules based on existing classes and makes
the software easier to conceptualise for physicists by reflecting the layout of experimental setups.

4.3 Front/Back End Separation

While GUI-based systems have traditionally excelled in providing real-time data visualization
and intuitive control, they are relatively inflexible in functionality and design, often being uniquely
configured to an experimental setup. We observed that the problem is severely worsened when
the instrument orchestration ecosystem becomes fundamentally GUI-oriented, where back-end
functionalities and protocols are mixed with GUI properties and functions. This design has a
high barrier of entry because it requires researchers to be fluent in building Python classes and
using GUI toolkits (such as PyQT) to maintain and debug the code. This situation is detrimental
to extending the functionalities of the ecosystem since new modules cannot be tested in experi-
ments without the labour of integrating them into the main GUI first.

Hence, we strongly recommend making a clear front/back end separation, where the GUI is
just a top-level layer that reads inputs and calls functions from the otherwise independent back-
end script that can also be run via a CLI, such as Windows Powershell or Conda. In the example
of QMLab, it was not obvious how this could be done before liveplotter was built as a drop-
in module. By achieving this separation, we were able to focus on core instrument interface
functionalities without being constrained by GUI implementation details. This allowed all group
members (of varying programming knowledge) to take more ownership of software maintenance
and create an adaptable experimental control system.

4.4 Version Control

A software tool we found crucial was version control of the entire development process. Good
version control may be summarised as:

1. Tracking code changes and attributing them to corresponding authors.

2. Methodically handle conflicting or merging changes between different versions.

The first feature is analogous to how experimentalists keep laboratory notebooks to maintain an
immutable record of each iteration of the experiment: The ability to refer or revert to a previous
state of the experiment is vital for scientific rigour and reproducibility of results. The second
feature enables organised collaboration on software and distributes workload amongst colleagues
when developing software.
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An industry-standard distributed version control system would be the Git tool, which of-
fers decentralised editing amongst multiple collaborators but still easily manages and merges
all changes. In addition, the internet enables us to perform remote version control, where code
changes are archived online in repositories, and vast online communities may collaborate re-
motely. Some commercially available hosts online using Git include but are not limited to ser-
vices like GitHub5, Bitbucket6 and GitLab7. Many institutions also self-host some form of Git
server, often an instance of GitLab8. Despite Git’s relative ease of use, consistent version control
may still be the most daunting aspect of developing a software ecosystem for less experienced
programmers. We recommend Chapters 15 and 16 in [SH15] for a step-by-step guide on using
Git and GitHub. In general, adopting a well-established version control system within a research
group facilitates shared code stewardship and promotes collaboration between colleagues, thus
improving code sustainability.

4.5 Documentation

Researchers not specialised in programming often dread documentation because of how time-
consuming the process can be on top of standard experimental record-keeping. Nevertheless,
simple documentation already goes a long way to improve the maintainability and thus longevity
of custom software. We find that as setups increasingly rely on advanced instrument orches-
tration to obtain useful results, allowing a new user to quickly understand the software directly
benefits the progress of the experimental work. In Python, type hinting and documentation
strings (docstrings) have been essential components of documentation for our software. The
former was introduced in Python 3.5 [Pyt24] and explicitly shows the object type of variables
and arguments for functions, thus making complex scripts more readable and easier to debug
before run-time. The latter provides a standardised way of describing how functions work, their
experimental relevance, and if needed the source literature from which a protocol was derived.

Additionally, a convenient tool for both creating high-quality documentation and alleviating
the laborious nature of this task would be Artificial Intelligence (AI) code completion tools such
as Github Copilot. These AI tools integrate directly into popular code editors (such as Visual
Studio Code) and suggest code snippets and documentation as the user works [MMN+23]. By
prompting the tool to interpret and automate documentation during and after writing the code,
we can greatly improve the consistency and efficiency of our documentation. This was especially
helpful in the early stages of our software when we did not yet have a standard format of docu-
mentation amongst all our modules. Obviously, such AI models are not completely accurate, but
it is far easier to correct documentation suggestions than that for functions. Additionally, while
the AI could infer the general intent of a function or class, we note that it is still important to
supplement the suggested documentation template with corrections or meaningful information
on less obvious aspects of the code.

5 https://github.com
6 https://bitbucket.org
7 https://gitlab.com
8 For example, Helmholtz Cloud provides a GitLab instance https://codebase.helmholtz.cloud for everyone in the
Deutsches Forschungsnetz (DFN)
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5 Conclusion

In this contribution, we examined the circumstances of building instrument orchestration in ex-
perimental physics to contextualise the difficulty in establishing an open-source research soft-
ware standard across the community. We believe the disparity in programming literacy amongst
experimental physicists and the inadequate recognition of good code in academia are major
factors hindering a convergence in how we create our software. We acknowledge the bottom-up
nature of software development in experimental physics, and simply encourage our colleagues
to maximise code sustainability within their research groups by applying the presented concepts
where possible. More than stylistic appeal, a well-maintained group repository makes research
work FAIR and reproducible, and we hope that the ideas presented in this contribution will in-
spire better code. A more advanced guide that extensively covers the fundamentals of using
software in physics research would be “Effective Computation in Physics: Field Guide to Re-
search with Python” written by Anthony Scopatz and Kathryn D. Huff [SH15].
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