
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

lea.online - Software Applications for
Individuals with Low Literacy

Jan Küster

DOI: 10.14279/eceasst.v83.2623

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

https://doi.org/10.14279/eceasst.v83.2623
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/


ECEASST

lea.online - Software Applications for Individuals with Low Literacy

Jan Küster1*

1 jkuester@uni-bremen.de
https://orcid.org/0009-0008-8088-9837

lab media & education; ZeMKI
University of Bremen, Germany

Abstract: In 2018, there were an estimated 6.2 million people between the ages
of 18 and 64 with low literacy skills in Germany. The ”lea.online” project designed
and implemented a software system with multiple applications in order to gain ac-
cess to this otherwise closed field and to conduct further research of the underlying
competency model. This work presents the principal aspects of the research and
development project and the challenges involved. It highlights the relationships be-
tween the domain of basic education and software engineering. It also sheds light
on issues related to publicly funded software engineering, software architecture,
outsourcing, documentation, accessibility, legal implications and sustainability.

Keywords: educational technology, research software engineering, field access, low
literacy, web development, mobile app development

1 Introduction

1.1 Low Literacy in German Society

In 2018, the LEO study identified approximately 6.2 million individuals aged between 18 to
64 in Germany with low literacy skills [GBD+19]. These individuals are deemed to have a
literacy level that restricts their participation in crucial aspects of society. According to the
study, this ranges from literacy at character level to literacy at sentence level (alpha level 1 -
3)1. The group is referred to in this paper as the ”target group”. Another important aspect
of the study is the demographic findings, which show that this group is not homogeneous. It
is highly diverse in terms of gender, age, migration background, educational attainment and
occupational status. Various former and recent studies2 have also shown a similar trend for
the German apprenticeship sector and for young people in general [MWWK24]. One public
measure to improve this situation is the provision of literacy courses at German community
colleges, also known as Volkshochschulen (VHS). However, only 0.7% of the 6.2 million people
actually attend such courses, mostly motivated by the desire to improve their job situation or job
prospects [GBD+19]. Fear of discrimination and shame are seen as the main reasons for not
attending [HM14].

∗ The author is sponsored on GitHub by Meteor Software and various members of the MeteorJs community for his
open source contributions and community ambassador activity
1 Alpha levels are a distinct classification of competencies
2 For example VERA 8, PISA, ULME I-III, and IQB

1 / 22

mailto:jkuester@uni-bremen.de
https://orcid.org/0009-0008-8088-9837


lea.online - Software Applications for Individuals with Low Literacy

1.2 otu.lea (2008 - 2010)

Community colleges (VHS) across various regions in Germany do provide literacy courses3.
The assessment of the individual literacy levels (diagnostics) is crucial for the teacher in order
to prepare for an upcoming literacy course with appropriate content and internal differentiation.
These initial assessments were originally designed as paper-and-pencil tests, which were admin-
istered by a person who was responsible for reading the task instructions aloud. Furthermore, the
ongoing documentation of the learner’s progress requires a continuous alignment with the com-
prehensive competency model that was developed during the original ”lea.”4 project (BMBF5,
until 2011). The ”otu.lea”6 project (BMBF, 2008 - 2010) attempted to fully digitize the diag-
nostic material and to make it available to institutions as a free online self-service [KW14]. The
application was written in Adobe Flash, which was becoming increasingly outdated and a major
security risk, and was therefore deprecated by Adobe itself.

1.3 lea.online (2018-2022)

The ”lea.online” project (BMBF, FKZ W143600) started with the initial objective of porting
otu.lea to replace Adobe Flash with modern web standards. Further objectives were to improve
the diagnostic material and the competency model and to include vocational fields in the learning
material. Teachers should be able to monitor and evaluate the diagnostics of their participants
over time. The aforementioned LEO study found that 78% of the target group regularly used
smartphones, tablets, messenger apps and social media at a similar rate to the general population
[GBD+19]. This was seen as a valuable opportunity to provide them with anonymous self-
learning based on the existing competency model, but independent of any institution. Therefore,
it was planned that a non-intrusive, anonymous learning app would be developed for the target
group.

The project took a highly interdisciplinary approach to Research Software Engineering (RSE).
It comprises multiple target user groups: individuals with low literacy, literacy course teachers,
as well as researchers. Additionally, the material for learning and assessment entails multiple
professions (technical/industry, healthcare, food processing industry) spread across four subject
dimensions (reading, writing, language understanding, and mathematics). The team consisted
of professionals from various disciplines, such as Educational Sciences, Mathematics, Software
Engineering, and Law. Despite their different backgrounds, the team shared the same vision of
creating a system of sustainable software applications and packages by applying best practices
in software engineering7.

The lea.online architecture, technology stacks and applications are presented in more detail
in Section 4. All code that was and is produced for lea.online is publicly available on GitHub 8

under free and open source licenses.

3 See https://www.vhs-bremen.de/veranstaltungen/grundbildung for recent examples in Bremen.
4 lea. stands for ”Literalitätsentwicklung von Arbeitskräften”, German for literacy education for adults; own transla-
tion
5 Bundesministerium für Bildung und Forschung; German Federal Ministry of Education and Research
6 Online Testumgebung für lea., German for online testing environment for lea.; own translation
7 Many of the best practices are covered by [LPM22] and the SURESOFT project, see https://suresoft.dev/
8 https://github.com/leaonline

2 / 22

https://www.vhs-bremen.de/veranstaltungen/grundbildung
https://suresoft.dev/
https://github.com/leaonline


ECEASST

2 Relation to RSE

A recent publication by Goth et al. defines research software as ”Foundational algorithms, the
software itself, as well as scripts and computational workflows that were created during the
research process or for a research purpose, across all domains of research.” [GAB+23, p. 5]
This section aims to place the software system of lea.online and its project context within that
definition in order understand it’s role within the domain of Research Software Engineering
(RSE).

2.1 Research Purpose

The actual goals of the former and ongoing research are the validation and improvement of the
competency model and to gain insights about the target group as software users. However, access
to the target group is aggravated as there is only a fraction actively reaching out to institutions.
The software applications of lea.online are created to gain access to the target group and to enable
this research while providing a learning benefit to the target group and institutions.

2.2 Software Engineering

The practical parts of the project cover industry-level software engineering to deliver production-
ready applications and services to a larger audience of non-professional users. It encompasses
stages across the entire software life cycle, ranging from domain analysis, requirements engi-
neering and active development to operations, maintenance, as well as end-of-life. Selected
topics are covered in Section 4, Section 5 and Section 7.

2.3 Target Group

The target group represents non-expert users. This contrasts with research software, made for
researchers or similar expert users. It implies a wide range of factors to consider when designing
software applications. For example, there are several accessibility needs that are highly specific
to the target group. Ensuring anonymity plays a key role in building trust between the target
group and the application. It is regarded as a helpful measure in reducing inhibiting factors, such
as shame and the fear of discrimination [Kop17, p.46]. This in turn makes it a great challenge for
the security aspects of the software system. These topics are covered in Section 5 and Section 6.

User experience design and software stability must be approached with an awareness of the
target group’s sensitivity to errors and its motivational implications. This is partially covered in
Subsection 7.3. Finally, paternalization is to be avoided, considering all the assistance given to
the users.

2.4 Project Context

All development took place within a publicly funded research project. It was as a collabora-
tion between working groups of two German universities (University of Bremen and School
of Education, Weingarten). This had a strong influence on the software development process.
Requirements on privacy or the incompatibility with on-demand payment procedures made it

3 / 22



lea.online - Software Applications for Individuals with Low Literacy

difficult to rely on cloud-service vendors, especially with those outside of the European Union.
The restricted and fixed financial resources, in addition to the global pandemic, resulted in a
constrained pool of available developers throughout the project funding period. Budgetary allo-
cations for development contracts were made as a potential compensation for this circumstance.
The involved challenges are described in Section 7.

2.5 Related Work

The low literacy of the target group implies a strong need for accessibility and user-centered
solutions, especially with respect to user interfaces and interaction design. Consequently, the
majority of related work addresses topics, such as user experience (UX), design, usability and
the visual aspects of accessibility, such as colors, typography, component design and layout.
Related findings from the lea.online project are published by Meyer [MWWK24] [MW21].
They partially build on top of the work by Medhi et al., Belay et al. and Maciel [BMB16]
[Mac13] [MPB+11]. Other usability-related publications originated in the otu.lea project, such
as [Kop17], and [KKW13]. Finally, there is a lack of visible publications in the field of RSE that
explicitly involve the target group.

3 Methodology

This project experience report provides a comprehensive overview of the major software en-
gineering challenges that emerged during the course of the lea.online project. Furthermore, it
considers the impact of these challenges on the final project outcome. They are presented in
three different parts. In Section 4, the various milestones and their respective challenges are
elucidated in chronological order. In Section 5 and Section 6, the challenges are discussed in
strong relation to the target group. Finally, in Section 7, the particular software engineering
practices that were shaped by the context of an understaffed development team are examined
from a technical perspective.

By doing so, this work reflects on a complex phenomenon, namely the development of a
software system with production-ready software applications that are based on an existing ed-
ucational competency model and tailored for a large audience of non-expert users. It is set in
the context of a publicly funded research project, in which software is developed with limited
resources and under limiting circumstances. At the same time the phenomenon and the context
have no clear boundaries and it appears that the project is a viable candidate for a case study
[RHRR12]. However, the author was actively involved in the project, which raises the ques-
tion of bias. Moreover, observing this phenomenon as part of a planned case study, including
interviews, formalized protocols and guidelines, was not considered in the project plan.

This requires a critical perspective, in order to avoid falling into the trap of claiming that a
software engineering publication is a case study without fulfilling the requirements for being one
[Woh21]. Nevertheless, the intention in this work is to provide the same depth and richness as
a case study does, with the same objectives ”[...] to better understand how and why software
engineering should be undertaken and, with this knowledge, to seek to improve the software
engineering process and the resultant software products.” [RHRR12, p. 3]

4 / 22



ECEASST

4 The lea.online Software System

This section describes in chronological order the major milestones of the lea.online project, the
challenges involved, and their respective results. This is followed by a description of the final
software system architecture.

4.1 Domain Analysis

The software architecture, software design and the selection of the technology stack have all
been influenced by a multitude of factors. First, there were the multiple use cases: diagnos-
tics, learning analytics, learning, authentication, content editing and delivery. Secondly, multiple
stakeholders were involved in one or more use cases, including the target group, teachers and lec-
turers, lea. core-team, student assistants and external contractors. While it was straightforward
to identify clear boundaries between use cases, designing an appropriate architecture proved to
be a challenge.

This led to an iterative approach with a first draft of a distributed system, comprising of multi-
ple standalone applications. The structure of the competency model and the diagnostic material
were the blueprint for many database schema models, used in most applications. Despite the
clear boundaries there was a hidden coupling between the applications introduced by these mod-
els, which led to the later emergence of lea.Backend and lea.Content.

The necessity for authentication across applications was identified at the outset, resulting in
the incorporation of the Authentication Service early on. In order to provide a unified design and
experience across devices, the browser became the definitive target platform for otu.lea (diagnos-
tics), lea.Dashboard (analytics) and the lea.Backend (editing). The mobile learning application
(lea.App) targeted Android and iOS instead.

4.2 Technology Stack

The selection for the technology stack was heavily influenced by the author’s skills, experiences,
a tight schedule and limited resources. Hence, the main stack for the web-applications and
services depended on MeteorJS9, a free and open source development platform for NodeJS10

with a tight database integration for MongoDB11, a NoSQL database with JavaScript-like query
syntax and JSON-like document structure. It allowed the project team to develop features quickly
and flexibly in small iterations, thanks to its use of a single programming language across the full
stack, its strong opinionated abstraction of the data-layer and its built-in reactivity model for the
client. Finally, deployment to the university’s hosting infrastructure was realized using a single
descriptive JSON-based configuration file and a single command12. A more detailed approach
was applied for the mobile app stack, which is further described Subsection 7.2.

9 https://github.com/meteor/meteor
10 https://nodejs.org
11 https://www.mongodb.com/
12 One-step-deployment, see [Spo04]; using https://meteor-up.com/

5 / 22

https://github.com/meteor/meteor
https://nodejs.org
https://www.mongodb.com/
https://meteor-up.com/


lea.online - Software Applications for Individuals with Low Literacy

4.3 lea.Backend and lea.Content

The enhancement of the competency model evolved into a comprehensive content management
system, named the “lea.Backend”. There was an increasing demand to centrally edit application
configurations, as well as the content they consume. Furthermore all the static content should be
centrally available to the consuming applications (Diagnostics, Dashboard, App), which led to
the creation of lea.Content, a headless service with the single purpose to store and serve content.
It is the main target of the lea.Backend editors for units and items, shown in Figure 1. The
lea.Backend is only accessible to the core team members and administrators.

One challenge was deciding how content could be edited and consumed at the same time.
Two different approaches have been implemented. In one approach, the consuming application
requests the content on-demand. This is implemented by otu.lea and the lea.Dashboard. The
other approach, implemented by the lea.App server, consists of an initial fetch and update of
all necessary content on server startup. Their impact on the final products is described in the
respective subsections.

4.4 otu.lea

The diagnostics platform’s production app is free for the public to use online13. It targets desktop
browsers and uses the responsive capabilities of Bootstrap14 for different screen resolutions.
Furthermore, it is installable as a Progressive Web App (PWA)15.

Scores by Google Lighthouse for website performance are 81 (performance), 87 (accessi-
bility), 78 (best practices) and 100 (SEO). This leaves room for improvement, for example by
reducing the initial bundle size delivered to the client16, by avoiding large layout shifts on page
load and by using dynamic imports17. However, no performance-related issues were reported by
teachers.

Currently the app requests any content (units, tasks, items, images) from lea.Content on-
demand. This approach allowed a quick transition from prototype to a full application. Moreover,
it reflected updates of the content immediately, which enabled editors to publish content inde-
pendently. The downside was that it introduced a strong dependency on the lea.Content service,
which had to be available in production at all times. This in turn complicated maintenance efforts
and created a barrier for developers, who also had to install and run both applications locally. An
implementation of the Strategy Pattern18 that allows switching between the different fetching
mechanisms could have helped to overcome this.

In otu.lea, every text and interactive element has auditive assistance using the browser’s builtin
Text-To-Speech capabilities, which are described in full detail in Subsection 5.1. Written user
input as shown in Figure 2a or selected choices are stored in the browser’s local storage19 until
the unit is completed and the responses are sent to the server. This measure helps to restore the

13 https://otulea.lealernen.de/willkommen
14 https://getbootstrap.com/
15 https://developer.mozilla.org/en-US/docs/Web/Progressive web apps/Guides/What is a progressive web app
16 Specifically by removing unused JS and CSS
17 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
18 https://en.wikipedia.org/wiki/Strategy pattern
19 https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

6 / 22

https://otulea.lealernen.de/willkommen
https://getbootstrap.com/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Guides/What_is_a_progressive_web_app
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
https://en.wikipedia.org/wiki/Strategy_pattern
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage


ECEASST

(a) Unit editor

(b) Item editor with scoring preview

Figure 1: lea.Backend screenshots of various editors

7 / 22



lea.online - Software Applications for Individuals with Low Literacy

(a) Unit view with text input items (b) Diagnostic evaluation summary

Figure 2: otu.lea screenshots of a unit and evaluation summary after a diagnostic session for
writing

latest page state, for example when the browser has been accidentally closed, without the need
to send responses to the server on every interaction.

4.5 lea.Dashboard

While the architecture and software design of the lea.Dashboard is the same as with otu.lea its
main difference is the audience (teachers of literacy courses) and the fact that it is limited to a
few views. Teachers can add user codes to their class in order to fetch results from otu.lea. The
Dashboard processes the results over multiple sessions, in order to create an overview of the
classes competencies (see Figure 3a). Furthermore, the results allow for a user-specific overview
of the competencies, including a rating of whether they have improved, declined or remained the
same (see Figure 3b). The scores for Lighthouse are slightly worse than for otu.lea and there is
no progressive web app available. However, this circumstance is negligible as there has been no
negative feedback on the performance so far by any of the over 60 institutions using it.

4.6 lea.App

Most of the development time was spent on the lea.App [KMW+23]. It is a native mobile
application, targeting Android and iOS. It was developed using React Native, a cross-platform
framework to develop native mobile apps using a single codebase in JavaScript and using React
to define components, layouts and rendering logic. During build the code is transpiled, then
compiled using native bindings. The result is a native app, as opposed to apps that use a webview

8 / 22



ECEASST

(a) Class view analytics

(b) User view analytics

Figure 3: lea.Dashboard screenshots of class-view and user-view

9 / 22



lea.online - Software Applications for Individuals with Low Literacy

(a) Map with levels (b) Unit with math items (c) Units completed (d) Progress tracking

Figure 4: lea.App selected screenshots of application cycle

to wrap an underlying HTML/JavaScript application. The application has a very simple and
linear workflow cycle, which is shown in Figure 4. By keeping this workflow simple, it was
possible to put more efforts into the user experience of the individual screens and components.

The app is freely available for the public on Android via https://play.google.com/store/apps/
details?id=com.testCompany.leaonline. A closer look at the URL reveals an awkward mistake
that was made when the app was configured, namely, the app id. It was set to an initial test
value but not updated properly before release and was not noticed, when the first version was
published to the Play Store. According to Google there is no way to change it other than to
register it as an entire new app, losing existing users and creating unnecessary confusion. The
URL is therefore kept as it is. The release for iOS was planned for 2022 but is delayed to autumn
2024 as there were several hidden complexities with React Native, which are described in detail
in Subsection 7.2.

The mobile app is self-contained, fetching all content from its own server and therefore largely
independent from the lea.Content server’s availability. The lea.App server fetches all necessary
content and assets at startup, ensuring no unnecessary fetching occurs unless specific environ-
ment flags are present. This approach required more effort initially but was much simpler to
maintain.

10 / 22

https://play.google.com/store/apps/details?id=com.testCompany.leaonline
https://play.google.com/store/apps/details?id=com.testCompany.leaonline


ECEASST

4.7 Authentication Service

In order to authenticate the project team with a single sign-on, a separate service has been im-
plemented using a library20 that implements the authorization code grant workflow of the OAuth
2 framework, defined in RFC 6749 [Har12]. In combination with a corresponding role system,
this enables a granular setting of access. For example, course instructors only have access to
otu.lea and the lea.Dashboard, while the project team also have access to the lea.Backend and
lea.Content. Users of otu.lea or the lea.App are authenticated by their respective applications.

The OAuth 2 standard proved difficult to understand during implementation due to its high
level of abstraction for general applicability. As a result, the authentication service required
significantly more effort than planned.

4.8 Shared Libraries

Shared libraries play a vital role in the overall system. They primarily enable reuse of code
among several applications but they also provide for a consistent user experience: The corelib21

contains common schema definitions for the competency model and also the Text-To-Speech en-
gine implementation that is used in otu.lea and the lea.Backend editor. The ui library22 provides
renderers for UI components used in units, tasks and items of otu.lea. They are also used in the
lea.Backend editors to render the edited content the exact same way as in otu.lea. The theme
package23 contains SCSS files that define the lea.online Bootstrap theme and is loaded by the
lea.Backend, otu.lea and lea.Dashboard to ensure a homogeneous visual user experience. There
are also several generic packages. These are also shared with the MeteorJS community or the
larger JavaScript community via the NPM ecosystem.

A potential downside to this approach was the increased maintenance requirements due to the
volume of the nearly 40 package repositories on GitHub. A major migration to a monorepo-
structure could help to dramatically reduce the number of pull requests when updating depen-
dencies.

4.9 Final Software System Overview

The final system architecture represents a distributed system of monolithic individual applica-
tions, but with a moderate coupling to the backend and the authentication service. This contrasts
with pure microservices, for which a loose coupling between the applications and services is a
fundamental design goal [New15]. With the exception of otu.lea, which depends on lea.Content,
each application can be run and maintained independently of each other. A failure of one appli-
cation should not directly affect the other applications.

The diagram, shown in Figure 5 visualizes the software architecture according to the system-
level view of the C4 architecture model [Bro17]. A more detailed view of the component-level
architecture is additionally shown in Figure 6.

20 See https://github.comleaonline/oauth2-server which builds on top of https://github.com/node-oauth/
node-oauth2-server
21 https://github.com/leaonline/corelib
22 https://github.com/leaonline/ui
23 https://github.com/leaonline/theme

11 / 22

https://github.comleaonline/oauth2-server
https://github.com/node-oauth/node-oauth2-server
https://github.com/node-oauth/node-oauth2-server
https://github.com/leaonline/corelib
https://github.com/leaonline/ui
https://github.com/leaonline/theme


lea.online - Software Applications for Individuals with Low Literacy

Figure 5: lea.online system-level architecture diagram

Figure 6: lea.online component-level architecture diagram

12 / 22



ECEASST

Instead of using a shared database, each of the application servers communicates with its
own database. This pattern was borrowed from the microservices architecture to achieve self-
containment for each application and service. It provides the advantage of selectively updating or
maintaining them individually and without affecting the rest of the system. In the later stages of
the project, this helped to deliver critical updates in a timely and frictionless manner. However,
it increased the overall complexity of the system and the need for data exchange between the
applications and services.

The communication endpoints are all RPC (Remote Procedure Call). This was chosen over
REST (Representational State Transfer) because there was no requirement for any of the appli-
cation APIs to be consumed publicly. The endpoints were designed in accordance to the logic of
the application. This introduced a level of coupling that was considered a fair trade-off for the
faster pace of development.

Authenticated requests require appropriate tokens, either obtained from the application’s back-
end or from the authentication server. A temporary solution for resource exchange between the
lea.App server and the content service has been implemented through using JWT with sealed
secrets. This will be replaced by an OAuth 2 client credentials workflow designed specifically
for server-to-server communication.

5 Accessibility

As already mentioned in Subsection 2.3 the low literacy of the target group implies several
requirements for software accessibility. A starting point for accessibility in web applications
is the Web Content Accessibility Guidelines (WCAG) from the W3C24. This section reflects
on selected topics that were found to be a valuable addition to these and other accessibility
guidelines.

5.1 Text To Speech

The former otu.lea Flash-based application used recorded voices to assist with texts and in-
teractive elements. While advantageous in presentation, thanks to the professional speakers’
clear voice, this was most inflexible in regards to changing and improving content. Instead, the
new otu.lea web application builds on top of the Text-To-Speech (TTS) capabilities of the Web
Speech API25. Screenreader support was not considered an alternative, because it had never been
requested by any institution in the 8 years of use.

The greatest advantage of browser-based TTS lies in its immediate availability without the
need for installation. Furthermore, nearly any textual content can be synthesized to provide
assistance with low effort. To maximize the effect across browsers, a generic library26 has been
developed that is also usable beyond the lea.online project.

The greatest disadvantage is the variable quality of the various voices, which is dependent
on the operating system and browser. It cannot be polyfilled or shimmed by applications or
24 https://www.w3.org/TR/WCAG22/ with supplemental guidance for cognitive accessibility at https://www.w3.org/
WAI/WCAG2/supplemental/#cognitiveaccessibilityguidance
25 https://developer.mozilla.org/en-US/docs/Web/API/Web Speech API
26 https://github.com/leaonline/easy-speech

13 / 22

https://www.w3.org/TR/WCAG22/
https://www.w3.org/WAI/WCAG2/supplemental/#cognitiveaccessibilityguidance
https://www.w3.org/WAI/WCAG2/supplemental/#cognitiveaccessibilityguidance
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://github.com/leaonline/easy-speech


lea.online - Software Applications for Individuals with Low Literacy

Figure 7: otu.lea login with text-to-speech support

libraries. Additionally, domain-specific terms or some anglicisms are insufficiently supported
and result in confusing output. Tools27 to train custom models of high quality do exist, however
the Web Speech API does not provide an implementation to load custom voices. Commercial
cloud-based solutions with high quality voices do exist, too. However their on-demand based
payment structure is unsustainable in the context of public projects.

A future plan is to move TTS to a standalone service using a custom voice, trained by a pro-
fessional speaker. The TTS is then synthesized on the server and streamed as compressed audio
to the client as partial HTTP response (206). This could provide a consistent TTS experience for
all users, including support for domain-specific pronunciations.

5.2 Accessibility vs. Security

Proficiency in any existing authentication procedure by the target group cannot be assumed. At
the same time the threshold for frustration among target group members might be low when faced
with barriers. Usability testing showed that even with a simple five-character code-based login,
some participants still needed help [Kop17]. This led to the requirement that authentication
needs to be as free from barriers as possible. Usernames are not required in order to guarantee
anonymity.

There were no definitive solutions found during the project phase that satisfied all criteria,
including the need for a strong security. User-defined passwords are problematic, as they imply
a certain level of reading and writing skill. They would have excluded individuals on the lowest
alpha levels. Password-free alternatives should be favored.

One-time logins via email (magic links) were not considered, since only about 30% oft the
target group uses emails [GBD+19]. OAuth-based logins with external services, such as offered
by several social media platforms were not considered due to privacy concerns.

In otu.lea the five-character login procedure still represents the minimal modest solution. In
practice, these codes are generated by the literacy course teachers and handed out to the par-
ticipants before the diagnostic assessment starts. The login is supported by TTS, which allows
the newly generated code and the actually entered code to be read aloud, as shown in Figure 7.
A rate-limiter on the login endpoint aims to reduce the surface for simple brute-force attacks,
however due to the short length of the code these measures are only basic. Second- or multi-
factor authentication involves extra steps in the login-sequence and was thus considered to be an
obstacle that could increase the level of frustration.

27 https://github.com/coqui-ai/TTS

14 / 22

https://github.com/coqui-ai/TTS


ECEASST

The FIDO alliance defined guidelines for making authentication accessible and is also aware
of the target group from a global perspective [Yao22]. A fundamental issue with their guidance
is the assumption that users will use devices with assistive technologies in order to set up the use
of protocols, like WebAuthn or CTAP (Client to Authenticator Protocol). Recent analytics of
the lea.App showed no activation of the operating system’s Assistive Technologies (AT) in any
account among about 800 entries. Upcoming large-scale inquiries about the target group should
explicitly include the distribution of these AT to gain profound knowledge for future decision
making.

Similar difficulties may be faced with the rather complex procedures for setting up passkeys28.
Physical devices (such as USB-dongles) represent a viable low-barrier alternative but were also
not considered, as there were no ways to ensure that users would be able to obtain and configure
such a device on a large scale. However, there is no distinct evaluation yet on any of these
solutions involving the target group. This represents a unique opportunity for upcoming studies.

5.3 Accessibility of Legal Texts

All applications of lea.online contain imprint, terms of service and privacy policy as required by
law. The juridical nature of these texts poses a barrier to understanding, even for non low literacy
individuals. Texts can be supplemented by TTS but this does not resolve the issue. Alternative
texts in easy language and simple language, as suggested by the WCAG, are not legally binding.
Future research should explore the simultaneous presentation of text in both legal and accessible
languages in the context of mobile device screens. However, a solution that is both accessible
and legally valid remains to be found.

6 Privacy

User privacy was a fundamental consideration in the design and implementation of the applica-
tions. However, this approach also presented its own set of challenges, which are discussed in
this section.

6.1 Privacy design in otu.lea and the lea.App

Privacy concerns were addressed during the application phase of the project by taking an anonymity-
first approach. As a result, the user accounts in otu.lea or the lea.App do not store any personal
information, and no personal information is requested at any time. Usernames and passwords are
randomly generated. However, IPs have to be logged as security measures but are are not asso-
ciated with any specific account. The user-agent and the screen dimensions are anonymized and
stored to provide insight and optimization for layout responsiveness and browser compatibility.
In addition, the lea.App collects a more comprehensive set of non-sensitive device information
as there is a wide variety of hardware to support in the Android ecosystem.

This privacy-conscious design directly impacts users. If the mobile device is lost or the app
is deleted, it becomes necessary to reinstate the learning progress. Nevertheless, this process

28 For an example see the required steps in https://developers.google.com/identity/passkeys

15 / 22

https://developers.google.com/identity/passkeys


lea.online - Software Applications for Individuals with Low Literacy

presents the same challenges as the general authentication procedure, which has been previously
outlined in Subsection 5.2. In order to facilitate the restoration, a 12-character-sized restore
code is provided, comprising three rows of four uppercase alphanumeric letters each. This code
has to be noted by the user manually. This method is optimal in regards to privacy as there is
no necessity to request personal data. However, is lacks a proper user experience and is prone
to errors, as confirmed by a recent logfile analysis. As with general authentication, a secure,
privacy-aware, and accessible solution remains to be found.

6.2 GDPR vs. Research

Legal consultations underlined that participation in research by the target group requires double-
opt-in to be legally valid. However, the privacy and accessibility design does not involve email
as a means to realize this in an automated way. Therefore, the alternative is a paper-based
participation agreement by attendees of literacy courses. This circumstance currently prevents
the publications of recent findings that reflect back on the target group. A solution that is legally
valid and applicable is yet to be found.

7 Software Engineering

This section considers a number of selected challenges and specific software engineering prac-
tices that were undertaken in the context of an understaffed development team.

7.1 Outsourcing Development

Outsourcing was regarded as a potential solution to compensate for the lack of resources and
expertise. The contracts were based on detailed requirements documents that outlined the desired
functionality, accompanied by explanations of abbreviations and domain-specific terminology.
There were minimal issues in terms of contractors’ understanding of the deliverables.

However, in the case of one contract, the delivered React Native components were only
deemed to be functionally acceptable, yet lacked a clean code design, comprehensive documen-
tation, and sufficient testing. Some components were mere copies with only minimal differences,
indicating a lack of fundamental knowledge, such as that pertaining to polymorphism. This re-
sulted in a much higher integration effort than anticipated, as these classes had to be rewritten.
In retrospect, the non-functional aspects of code quality and testing requirements were insuffi-
ciently described in the requirements document, and the acceptance criteria were too focused on
the functional aspects. Acceptance criteria should additionally include how tests are expected to
cover the newly provided code.

Another time-consuming aspect of this contract was by the lengthy and exhausting process of
communication. It was not possible to establish direct contact with the responsible developers,
as all communications were conducted through the project manager. All commits were made in
a private repository by an anonymous GitHub account that had been specifically created for this
contract. In light of these circumstances, it was postulated that the manager may have subcon-
tracted the development process to a third party in an effort to reduce costs, albeit at the potential

16 / 22



ECEASST

expense of quality and communication. As a potential future measure, the requirements doc-
ument should explicitly demand contact with the relevant developers, who will implement the
solutions, in order to prevent managers from gatekeeping and controlling the communication.
Additionally, there should be an explicit policy that prevents the contractor from outsourcing
development to a third-party.

7.2 Cross Platform Mobile Development

The elicitation and selection for a proper stack towards a sustainable mobile app development
was a challenging task in the middle phase of the project (late 2019 to early 2020). At the time,
the following factors played an important role in the decision-making process:

1. Project plan. A production-grade release had to be published by the end of 2021.

2. Personal. The stack should be suitable to a very small team of one full-time developer and
up to three student assistant developers. Managing multiple code-bases must be avoided.

3. Platform. The (mobile) target platforms are Android and iOS. It should take as little effort
to deploy both. At the same time it should be possible to develop on as many Desktop
platforms as possible.

4. Parallel Development. The app is to be developed in parallel with the other applications
(dashboard, diagnostics, services etc.) in order to meet the overall release schedule.

5. Skillset. The developers’ current knowledge and experience with programming languages,
their primary paradigms, frameworks and libraries has to be considered. A stack with
familiar technologies is prioritized to reduce the mental load while working on multiple
projects.

6. Learning curve. The learning curve of the stack and its available resources (documenta-
tion, tutorials etc.) should be considered to keep on-boarding within a manageable time.

7. Ecosystem. The stack should reside within a free and open ecosystem, with available
packages/libraries and an active community of contributors and maintainers and/or a strong
backer behind the main technology, such as a company or foundation.

7.2.1 Selection Process

At the time of the selection, there was already a prototypical server-backend written using Mete-
orJS. The pre-selection process relied on GitHub, because it is the largest platform hosting open
source repositories, including the most popular but also most recent ones. It resulted in a final
comparison between Flutter29 and React Native30, as these were the most popular repositories
when the development began. The Flutter framework offered a more complete set of tools to

29 https://github.com/flutter/
30 https://github.com/facebook/react-native

17 / 22

https://github.com/flutter/
https://github.com/facebook/react-native


lea.online - Software Applications for Individuals with Low Literacy

target multiple platforms and a more comprehensive documentation, including a UI widget cat-
alog out-of-the-box. It is backed by Google and provided its own package management. The
Dart language appeared similar to JavaScript in its syntax. In contrast, React Native required the
entire codebase to be written in JavaScript and JSX. There were no new concepts or paradigm
to learn. The documentation was sufficient but not as detailed as with Flutter. It provided com-
patibility with the NPM31 registry which contains over one billion packages for the JavaScript
ecosystem.

7.2.2 Selection Outcome and Retrospective

Both platforms were able to cater to the needs of the project plan, personal, platform and learning
curve. There was a slight advantage for Flutter, due to its richness in documentation. However,
the selection went for React Native, which better met the existing skillset and offered a much
larger ecosystem. Using the same programming language for all application was assumed to be
the best way to enable parallel development.

Retrospectively the author questions this choice. First, the NPM ecosystem contains a large
number of outdated or abandoned React Native packages. A remedy was provided by Expo32,
a framework for React Native with native integrations and build-tools. Nowadays, Expo is even
suggested by the official React Native installation guide. Given that Expo has its own release-
cycle and dependencies, it demanded an unplanned additional maintenance effort. Its toolchain
for building the native target platforms dramatically simplifies the process in comparison to the
native workflow. However, full release management from code to app store is only available
to subscribers of their commercial cloud services. This option was deemed unsustainable, due
to the payment-on-demand structure and server location outside of the EU. This resulted in an
intensified deployment effort, due to the deployment process being only partially automated.

7.3 Connectivity and Offline-first

A disastrous decision in the planning phase was to defer the implementation of full offline capa-
bilities to a later stage in the project, while relying on the Websocket-based MeteorJS backend
for the mobile app. With that design, the mobile app assumes a stable connection to the lea.App
server in order to fetch new units, items and images. In isolated view the design and imple-
mentation are stable and cause no major errors in production. However, an internal review of
production errors revealed a group of edge-cases that caused such errors when the app ran in the
background for a longer time and was then brought back to the active state. At that point the app’s
state management failed to reconnect to the server, causing a timeout on any attempted request.
Further investigation revealed the overall state of ”being connected” vs. ”should reconnect” is
influenced by the interplay of multiple factors:

1. Whether a connection to the internet is established on the operating system level (via WiFi
or mobile data).

2. Whether the app is open.
31 https://npmjs.com
32 https://expo.dev/

18 / 22

https://npmjs.com
https://expo.dev/


ECEASST

3. Whether the app is active33.

4. Whether the app has established a Websocket connection with the server and there is no
connection timeout.

On top of these factors, it is assumed that all the connectivity-related code is free of errors. The
sum of these factors made it difficult to ensure availability at all times and the attempted fixes
for the above described errors resulted in unplanned extra effort. Retrospectively the choice for a
Websocket should have been avoided in favor of a stateless REST-based solution and an offline-
first design from the beginning. A future concept for migrating to an offline-first architecture
should be evaluated. This evaluation could focus on the identification of best practices and
challenges in refactoring and software architecture.

7.4 Addressing the Bus Factor

The bus factor (or truck factor) is a measure used to describe the number of employees needed
to depart in order to stall the entire project. It is assumed to have the same effect as if they were
to be struck by a vehicle of considerable mass, such as a bus or truck [JETK22]. A value of one
is assigned to the worst case scenario, reflecting the fact that critical knowledge is concentrated
in the hands of a single individual.

The original project plan anticipated the employment of two half-time developers but it was
not possible to find a second developer. Consequently, the single existing developer (the author)
has been employed full-time to attempt to meet the project milestones. This resulted in a total
centralization of knowledge, which imposed a high risk of losing valuable information about
code, design and processes. Therefore, countermeasures were implemented with a focus on
transparency and documentation alongside code quality and automation.

The entire set of repositories for all applications, services and libraries was developed in public
on GitHub from the initial commit. This aimed to force a certain degree of understandable
branch-naming and commit conventions, making the code more searchable for specific features
or fixes. In retrospect, this process could have been optimized by using conventional commits34

to avoid non-scoped or generic commit messages. Additionally, a strict branch-per-feature or
branch-per-fix convention should have been applied in order to backtrack changes in isolated
environments. The effects of these measures have not yet been researched but could be a viable
subject of future research.

Another measure was to provide extensive documentation for the mobile app development in-
stallation, since it is the most complex process in the lea.online system, involving multiple tools
and frameworks to be installed. It was tested during the on-boarding of new student assistants
without any additional help. The procedure revealed a lack of reproducibility for the installation
of the mobile platform SDKs across different development platforms and missing troubleshoot-
ing information.

33 https://reactnative.dev/docs/appstate
34 https://www.conventionalcommits.org

19 / 22

https://reactnative.dev/docs/appstate
https://www.conventionalcommits.org


lea.online - Software Applications for Individuals with Low Literacy

8 Critical Reflection and Outlook

This work provided an overview of the research and development project lea.online, presenting
selected findings on topics in research software engineering. It aimed for a horizontal view by
presenting a wide range of topics with varying depth, thereby underscoring the complex nature of
interdisciplinary research projects. It was frequently observed that sustainable solutions, which
may initially require a greater degree of effort, could prove to be a worthwhile investment in the
long term. However, this was not always feasible within the given project timeline.

Many of the reported topics allow for further investigation and may become the subject of
future research. The author is explicitly open to collaboration. Additionally, topics such as
software architecture or privacy could have been described in more detail but would have consti-
tuted a publication in themselves. Finally, future work would undoubtedly benefit from a more
standardized empirical research design that is prepared in advance of the projects.

The lea.online project has formally ended but the software system remains operational and
maintained by the author’s working group. Applications for follow-up research projects includ-
ing active work on the software system are in current progress.

Bibliography

[BMB16] E. G. Belay, D. S. McCrickard, S. A. Besufekad. Claims-to-Patterns Approach
to Leverage Mobile Interaction Design for Low-Literacy Users. In Proceedings
of the 7th Annual Symposium on Computing for Development. ACM DEV ’16.
Association for Computing Machinery, New York, NY, USA, 2016.
doi:10.1145/3001913.3001928
https://doi.org/10.1145/3001913.3001928

[Bro17] S. Brown. The C4 model for visualising software architecture. 2017.
https://c4model.com/

[GAB+23] F. Goth, R. Alves, M. Braun, L. J. Castro, G. Chourdakis, S. Christ, J. Cohen,
F. Erxleben, J.-N. Grad, M. Hagdorn, T. Hodges, G. Juckeland, D. Kempf, A.-
L. Lamprecht, J. Linxweiler, M. Schwarzmeier, H. Seibold, J. P. Thiele, H. von
Waldow, S. Wittke. Foundational Competencies and Responsibilities of a Research
Software Engineer. Nov. 2023. arXiv:2311.11457 [physics].
doi:10.48550/arXiv.2311.11457
http://arxiv.org/abs/2311.11457

[GBD+19] A. Grotlüschen, K. Buddeberg, G. Dutz, L. Heilmann, C. Stammer. LEO 2018 -
Leben mit geringer Literalität. Pressebroschüre, Hamburg, 2019.
https://leo.blogs.uni-hamburg.de/

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. Request for Comments RFC
6749, Internet Engineering Task Force, Oct. 2012.
https://datatracker.ietf.org/doc/rfc6749/

20 / 22

http://dx.doi.org/10.1145/3001913.3001928
https://doi.org/10.1145/3001913.3001928
https://c4model.com/
http://dx.doi.org/10.48550/arXiv.2311.11457
http://arxiv.org/abs/2311.11457
https://leo.blogs.uni-hamburg.de/
https://datatracker.ietf.org/doc/rfc6749/


ECEASST

[HM14] D. Heisler, G. Mannhaupt. Analphabetismus und Alphabetisierung in der Ar-
beitswelt. Peter Lang Verlag, Berlin, Germany, 2014.
doi:10.3726/978-3-653-03543-8
https://www.peterlang.com/document/1048095

[JETK22] E. Jabrayilzade, M. Evtikhiev, E. Tüzün, V. Kovalenko. Bus factor in practice. In
Proceedings of the 44th International Conference on Software Engineering: Soft-
ware Engineering in Practice. ICSE-SEIP ’22, p. 97–106. Association for Com-
puting Machinery, New York, NY, USA, 2022.
doi:10.1145/3510457.3513082
https://doi.org/10.1145/3510457.3513082

[KKW13] I. Koppel, J. Küster, K. D. Wolf. Usability testing with female functional illiterates,
Usability-testing mit funktionalen analphabetinnen. Lecture Notes in Informatics
(LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI) P-218:293–296,
2013.

[KMW+23] J. Küster, I. A. M. Meyer, M. Windler, K. D. Wolf, I. Koppel. lea.online App. Oct.
2023.
doi:10.5281/zenodo.10816689
https://zenodo.org/records/10816688

[Kop17] I. Koppel. Entwicklung einer Online-Diagnostik für die Alphabetisierung: eine
Design-Based Research-Studie. Springer VS research. Springer VS, Wiesbaden,
2017.

[KW14] I. Koppel, K. Wolf. otu.lea: eine niedrigschwellige Online-Diagnostik für funk-
tionale AnalphabetInnen in der Kursarbeit. Alfa-Forum, pp. 38–41, 01 2014.

[LPM22] J. Linxweiler, S. Peters, S. Marcus. SURESOFT:Principles of Software Engineer-
ing. Sept. 2022.
doi:10.5281/zenodo.7120360
https://zenodo.org/records/7120360

[Mac13] F. R. Maciel. PALMA: Usability Testing of an Application for Adult Literacy in
Brazil. In Marcus (ed.), Design, User Experience, and Usability. Health, Learning,
Playing, Cultural, and Cross-Cultural User Experience. Pp. 229–237. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[MPB+11] I. Medhi, S. Patnaik, E. Brunskill, S. N. Gautama, W. Thies, K. Toyama. Designing
mobile interfaces for novice and low-literacy users. ACM Trans. Comput.-Hum.
Interact. 18(1), may 2011.
doi:10.1145/1959022.1959024
https://doi.org/10.1145/1959022.1959024

[MW21] I. A. M. Meyer, K. D. Wolf. Intuitive Visualization of Complex Diagnostic
Datasets to Improve Teachers’ Individual Support of Learners Based on Data

21 / 22

http://dx.doi.org/10.3726/978-3-653-03543-8
https://www.peterlang.com/document/1048095
http://dx.doi.org/10.1145/3510457.3513082
https://doi.org/10.1145/3510457.3513082
http://dx.doi.org/10.5281/zenodo.10816689
https://zenodo.org/records/10816688
http://dx.doi.org/10.5281/zenodo.7120360
https://zenodo.org/records/7120360
http://dx.doi.org/10.1145/1959022.1959024
https://doi.org/10.1145/1959022.1959024


lea.online - Software Applications for Individuals with Low Literacy

Driven Decision Making. In Stephanidis et al. (eds.), HCI International 2021 -
Posters. Pp. 102–108. Springer International Publishing, Cham, 2021.

[MWWK24] I. A. M. Meyer, K. D. Wolf, M. Windler, J. Küster. Digitale berufsfeldbezogene
Förderung von Literalität und Numeralität in der arbeitsorientierten Grundbildung
mit der lea.App. Berufs- und Wirtschaftspädagogik - online, 2024.
https://www.bwpat.de/ausgabe/spezial-ht2023/meyer-etal

[New15] S. Newman. Building microservices: designing fine-grained systems. O’Reilly
Media, Beijing Sebastopol, CA, first edition edition, 2015. OCLC: ocn881657228.

[RHRR12] P. Runeson, M. Höst, A. Rainer, B. Regnell. Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, 1 edition, Mar. 2012.
doi:10.1002/9781118181034
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118181034

[Spo04] J. Spolsky. Joel on software: and on diverse and occasionally related matters
that will prove of interest to software developers, designers, and managers, and to
those who, whether by good fortune or ill luck, work with them in some capacity.
Apress, Berkeley, CA, 2004.

[Woh21] C. Wohlin. Case Study Research in Software Engineering—It is a Case, and it is a
Study, but is it a Case Study? Information and Software Technology 133:106514,
May 2021.
doi:10.1016/j.infsof.2021.106514
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000033

[Yao22] Yao Ding. Guidance for Making FIDO Deployments Accessible to Users with
Disabilities. White paper, FIDO Alliance, 2022.
https://fidoalliance.org/wp-content/uploads/2022/10/
Guidance-for-Making-FIDO-Deployments-Accessible-to-Users-with-Disabilities
FINAL.pdf

22 / 22

https://www.bwpat.de/ausgabe/spezial-ht2023/meyer-etal
http://dx.doi.org/10.1002/9781118181034
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118181034
http://dx.doi.org/10.1016/j.infsof.2021.106514
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000033
https://fidoalliance.org/wp-content/uploads/2022/10/Guidance-for-Making-FIDO-Deployments-Accessible-to-Users-with-Disabilities_FINAL.pdf
https://fidoalliance.org/wp-content/uploads/2022/10/Guidance-for-Making-FIDO-Deployments-Accessible-to-Users-with-Disabilities_FINAL.pdf
https://fidoalliance.org/wp-content/uploads/2022/10/Guidance-for-Making-FIDO-Deployments-Accessible-to-Users-with-Disabilities_FINAL.pdf

	Introduction
	Low Literacy in German Society
	otu.lea (2008 - 2010)
	lea.online (2018-2022)

	Relation to RSE
	Research Purpose
	Software Engineering
	Target Group
	Project Context
	Related Work

	Methodology
	The lea.online Software System
	Domain Analysis
	Technology Stack
	lea.Backend and lea.Content
	otu.lea
	lea.Dashboard
	lea.App
	Authentication Service
	Shared Libraries
	Final Software System Overview

	Accessibility
	Text To Speech
	Accessibility vs. Security
	Accessibility of Legal Texts

	Privacy
	Privacy design in otu.lea and the lea.App
	GDPR vs. Research

	Software Engineering
	Outsourcing Development
	Cross Platform Mobile Development
	Selection Process
	Selection Outcome and Retrospective

	Connectivity and Offline-first
	Addressing the Bus Factor

	Critical Reflection and Outlook

