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Abstract: Simulation codes are often implemented as one single application or li-
brary, which often clearly defines the system under testing and an oracle for regres-
sion tests. For some simulations, coupling multiple codes is necessary. In the case of
the coupling library preCICE, a realistic system of at least two coupling participants
(typically each a different simulation code) consists not only of the library, but of a
complete software stack of components underneath each coupling participant. Each
component is developed in a separate software repository, and the numerical and
screen output often vary between executions or dependency versions. These make
preCICE an interesting study case for system regression tests, requiring solutions to
issues not typically faced by stand-alone research software projects. In this paper,
we relate the challenges faced when testing the preCICE ecosystem to the testing
approaches of other projects, and we present a new framework for system regres-
sion tests for preCICE, based on connected Docker containers with cached layers,
version control of and numerical comparisons to reference results, and interaction
of GitHub Actions workflows across repositories.
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1 Introduction

Over the past decades, the scientific community has developed specialized simulation software
for a wide range of phenomena, at a wide range of scales. One of the main challenges since longer
is multi-physics and multi-scale simulations, such as the fluid-structure interaction in aerolastic-
ity, ocean-atmosphere dynamics in geophysics, or magnetohydrodynamics [KMW+13]. Instead
of developing new, even more specialized software for specific multi-physics and multi-scale
simulations, the coupling library preCICE1 (like other solutions) allows scientists and engineers
to compose multi-physics and multi-scale simulations, reusing the codes they already have at
hand [CDR+22]. They can do that either by directly calling the API of preCICE, or using some
of the ready-to-use adapters (part of the preCICE ecosystem), as discussed in Section 2.

As a library that enables research, preCICE needs to be continuously and reliably tested, with
test suites (collections of tests) covering all the critical features. Different levels of testing [BF14]
are particularly interesting for preCICE: static (linting), unit, integration, system, and regression
tests. The core library is already extensively tested with static, unit, and integration tests, and
the same holds for some of the language bindings and adapters [CDR+22, SCU22]. For testing

1 preCICE website: https://precice.org/, available under LGPLv3 on GitHub: https://github.com/precice/precice/
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the complete system (in particular before each release), developers currently run selected test
cases (complete coupled simulations that serve as tests) manually and compare results to their
expectations, as it is common across research software [KB14]. While several test cases are
already available as user tutorials2 or as further published validation cases (with examples of
user applications discussed in the preCICE reference papers [BLG+16, CDR+22]), automating
these and tracking any regressions of simulation results is particularly challenging due to the very
nature of a coupling library, as discussed in Section 3. Early implementations of such system
tests for preCICE [Hos18, Lin19, CDR+22] demonstrated several such challenges at scale.

In Section 2, we dive deeper into the preCICE ecosystem and its development workflows.
Based on these, we identify the unique testing challenges that partitioned simulations pose in
Section 3, and we study how other approaches fit into these challenges in Section 4. We then
define our expectations for a better solution in Section 5 and describe the recently implemented
solution in Section 6, before demonstrating it in action in Section 7. Finally, we conclude and
present ideas for future research in Section 8.

2 The preCICE partitioned simulation ecosystem

To set up a multi-physics simulation with preCICE, a user needs to start two or more coupling
participants (see Figure 1). Each participant is a simulation code that uses the preCICE API and
links to the preCICE library. A user then needs to start each participant as a different process,
which then find each other and communicate through the local or wider network.

The first release of preCICE [BLG+16] introduced this core library, written in C++, which
offers efficient communication methods (over TCP sockets or MPI ports), several data mapping
algorithms (including RBF-based interpolation methods), and advanced numerical coupling al-
gorithms (such as Anderson acceleration). The second major release of preCICE [CDR+22]
included several additional components (such as ready-to-use adapters for several open-source
simulation codes) that made it possible to construct such simulations often without writing any
additional code. These adapters [UBC+17] are either modified versions of the respective simu-
lation code, wrapper classes, or stand-alone plug-ins that implement calls to the preCICE API.

Today, codes coupled to preCICE can be written in C++, C, Fortran, Python, Julia, Matlab,
or Rust. Ready-to-use adapters are available for codes such as OpenFOAM, deal.II, FEniCS,
DUNE, DuMux, SU2, CalculiX, and more (Figure 2). Tools such as the Micro-Manager or
the FMI Runner allow multi-scale simulations and coupling to system codes. A collection of
currently 31 tutorial cases serves as concrete simulation test cases for these components, with
many of the test cases being available for multiple combinations of simulation codes. All of these
components are developed openly on GitHub3, in more than 40 repositories. The documentation
is sourced from several repositories and rendered in one place: the preCICE website4.

The design decision of using individual repositories instead of a monorepo was primarily dic-
tated by the fact that each adapter is mainly an extension of each simulation code, and not of the
preCICE library. This decision allows each repository to use a different license, build system, CI

2 preCICE tutorials: https://precice.org/tutorials.html
3 preCICE organization on GitHub: https://github.com/precice/
4 preCICE documentation: https://precice.org/docs.html
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Figure 1: Overview of preCICE: Two or more single-physics simulation codes start normally,
each in each own process, and they link to the preCICE library. The API calls, together with any
additional glue code, are called an “adapter”, which can be part of the simulation code, an addi-
tional class, or a stand-alone package. The preCICE library handles the communication between
the simulation codes, space and time interpolation of data, and provides coupling algorithms.

workflow, versioning scheme, and release schedule. It has also made it easier for students and
external researchers to contribute to individual components, minimizing the need for synchro-
nization and the impact of decisions and actions to the rest of the codebase, and making academic
attribution fine-grained. However, this separation of concerns requires additional metadata to
define a complete and compatible software stack. This problem is currently addressed by the
preCICE distribution5 and is the subject of a running research project6.

Figure 2: Overview of the preCICE ecosystem as a software stack. Every box represents a
separate component, hosted in a separate software repository. The simulation codes (e.g., Open-
FOAM) are not part of the preCICE ecosystem, but the adapters for these codes are. All released
components, the simulation codes, and additional tools, are included in the Demo Virtual Ma-
chine image (an Ubuntu-based Vagrant box).

5 preCICE distribution: https://precice.org/installation-distribution.html. Latest version: v2404 [CCD+24].
6 DFG project preECO: https://gepris.dfg.de/gepris/projekt/528693298?language=en
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3 Challenges

Research software is often designed as one stand-alone application, developed in one software
repository. In such cases, a system test is the complete execution of this one code. A regression
test compares the output of this run to the output of previous runs, with the results format being
controlled by the application developers. Challenges we have faced in several projects include
reproducible and/or parallel runs, scaling up the number of tests, and tracking the history of
regressions, while several other common challenges are listed in literature [BF14, KB14]. In
performance regression tests, consistency and running on HPC systems become challenging as
well. In the case of preCICE, the aspects of the ecosystem discussed in Section 2 bring additional
challenges, which we identify in the following.

3.1 Simulation codes call preCICE as a library

Since preCICE is a library, other codes call it, often via additional layer (adapters and language
bindings). A system test needs to start the third-party simulation codes, which will then call any
intermediate layers, before calling preCICE. In research software applications, it is often enough
to start the application itself, which would automatically call any dependencies.

3.2 Testing requires at least two simulation participants

Due to the very nature of partitioned simulations, each test representing a complete system re-
quires starting at least two coupling participants. In the case of preCICE, this means starting two
different processes, even if we only need to test the interaction between these participants. We
can simplify these systems using mock objects [BF14], but these do not reveal all the numerical,
communication, or other technical issues that arise in an actual simulation.

3.3 Each participant uses multiple components

As we develop not only one library, but a complete collection of components that depend on each
other and on third-party codes, every coupling participant will involve multiple components of
the ecosystem (core library, language bindings, one adapter, specific tutorial setup). We need to
explicitly specify compatible versions of each component in a test, which becomes particularly
challenging in case of a breaking release in the core library (which brings non-backwards com-
patible changes in the API and the configuration). Dependency management becomes an issue
as well, as the multiple layers might depend on the same shared libraries (such as MPI).

3.4 Multiple repositories, multiple perspectives

Since the various components are developed in different repositories by different people, the
question often arises “what is the component under test?”. As discussed in the preCICE v2
reference paper [CDR+22], stakeholders include the release manager, the library developers,
the adapter developers, the tutorial contributors, and the developers of the testing infrastructure
themselves. The release manager is interested in knowing if all development branches of all
components work together and are ready to be released as a new preCICE distribution. For an
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adapter developer, important is if a contribution to that adapter works with compatible branches
of every other component . Tests need to be triggered across repositories and the results need to
be visible at the repository that requested the tests.

3.5 Long building and running time

Every test requires multiple components to form a simulation stack and rebuilding one compo-
nent of the stack often means rebuilding the components that depend on it as well. For this reason,
caching of dependencies becomes essential. As is common in numerical simulations, execution
itself also takes significant time. As an example, one test fluid-structure interaction simulation
involving OpenFOAM and deal.II requires installing preCICE, OpenFOAM, and deal.II, build-
ing the OpenFOAM and the deal.II adapters, getting the tutorials repository, and executing a
simulation for at least several minutes.

4 Examples from the literature

Various other projects incorporate system testing in their continuous integration pipelines. We
present here examples from projects that partially share the same challenges. In Subsection 4.1,
we look into the library deal.II, as an example of established good practices in research software.
In Subsection 4.2, we look into software with similar goals as preCICE: the multiscale universal
interface (MUI) and the model order reduction library pyMOR. In Subsection 4.3, we look into
the ecosystems of scientific software installations EESSI and E4S, as well as the xSDK Exam-
ples, as they also combine multiple components in their tests. Finally, in Subsection 4.4, we
discuss previous approaches to creating system tests for preCICE.

4.1 Example 1: deal.II

deal.II [ABD+21] is an open-source C++ library that allows users to create their own simula-
tion codes, discretizing their models using the finite elements method. It is also developed in
academia, and it also provides multiple tutorial cases that need significant time to build and
run. deal.II is developed primarily in a single repository, with its complete test suite defined
in CMake, and the test state visualized in a dashboard7. The example setups are available in
the same repository and reference screen output is stored next to each test case configuration8.
For regression testing, the screen output is compared to the reference as text, a comparison sus-
ceptible to floating point errors. In addition to regression tests, deal.II also includes automatic
performance tests9. CI workflows are executed both on GitHub Actions and on a Jenkins server.
Automated tests are also executed for the deal.II code gallery, a repository including more com-
plex, community-contributed examples10.

This is a good example of current testing practices in numerical research software. Compared
to deal.II, the core library of preCICE applies many similar practices, and the regression tests of

7 deal.II CDash: https://cdash.dealii.org/
8 The deal.II Testsuite: https://dealii.org/developer/developers/testsuite.html
9 deal.II performance tests: https://dealii.org/performance tests/reports/render.html?#!current.md
10 deal.II code gallery tests: https://github.com/dealii/code-gallery/blob/master/.github/workflows/linux.yml
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deal.II correspond to the integration tests of the preCICE library [CDR+22]. However, deal.II
does not face the challenge of requiring multiple participants, each using multiple components,
and developed in different repositories. Both libraries still rely on multiple other libraries as
well, each potentially introducing regressions with each new version, but this is a common issue,
outside the scope of this paper.

4.2 Example 2: MUI and pyMOR

MUI [TKB+15]11 is a project with similar goals as preCICE, which does not currently provide
ready-to-use adapters for simulation codes. The tests included in the MUI test suite only test the
core library, similarly to the integration tests of the preCICE core library12.

Another example is the Python-based code pyMOR [MRS16]13, which also maintains inte-
grations to simulation codes (FEniCS, deal.II, NGSolve). The deal.II integration is hosted in a
separate repository, while the integrations to FEniCS and NGSolve (both offering a Python API)
are examples in the main repository. pyMOR itself uses pytest for its test suite, while the deal.II
integration is tested directly in its repository, using a tailored Docker image14.

4.3 Example 3: EESSI, E4S, and the xSDK Examples

The European Environment for Scientific Software Installations [DHH+23] maintains a shared
repository of scientific software installations that can be used on various systems, focusing
mainly on HPC sites15. As a collection of software packages, it serves as another ecosystem
to compare to, breaking the boundaries of testing a single application. It includes a test suite16

based on the ReFrame testing framework [KMR+20]. While ReFrame is a general framework, it
mainly facilitates interacting with HPC systems, providing tools to write portable test cases. The
challenges it solves are different than the challenges discussed in Section 3, and the two systems
could be used together in the future.

Despite the complexity of this project, the challenges are again different: multiple components
are indeed combined in a stack, but with lower component coupling as in the case of the preCICE
ecosystem. The components (a filesystem, a package manager, and more) run as services or
stand-alone packages, and they are developed independently to each other.

Similar testing practices are applied by the Extreme-scale Software Stack (E4S)17, based on
in-house tools to test and deploy the software stack on various HPC systems.

A similar example is the xSDK Examples, providing test cases for various components of the
extreme-scale scientific software development toolkit18. Every example uses CMake as a build
system and defines tests using CTest. A bundle of all components is available via Spack, a

11 MUI website: http://mxui.github.io/
12 MUI test suite: https://github.com/MxUI/MUI-Testing
13 pyMOR: https://pymor.org/
14 pyMOR-deal.II CI workflow: https://github.com/pymor/pymor-deal.II/blob/main/.ci/job-template.yml
15 EESSI project: https://www.eessi-hpc.org/
16 EESSI test suite: https://github.com/EESSI/test-suite, based on ReFrame: https://reframe-hpc.readthedocs.io/
17 E4S: https://e4s-project.github.io/, testing dashboard: https://dashboard.e4s.io/
18 xSDK: https://xsdk.info/, SDK Examples: https://github.com/xsdk-project/xsdk-examples
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requirement enforced by xSDK. Both of these aspects (uniform build system and package ver-
sioning/distribution) are not possible for the preCICE ecosystem, since the preCICE developers
have no control over the build system and distribution of each simulation code.

4.4 Previous preCICE system tests

Previously [Hos18, Lin19, CDR+22], preCICE had an earlier prototype of system tests. That
was based on Python scripts building and publishing Docker images, one for each test. The
scripts and test specifications were hosted in a dedicated repository19, which was connected to
the Travis CI platform. For caching, Docker images were published on Docker Hub20. For
regression checking, the scripts were performing hash comparisons on the result files and text
comparisons on the logs. A separate repository was used to archive reports of the test runs21.

This solution proved to be difficult to maintain and to scale with the increasing number of com-
ponents and test cases, even after applying some of the ideas presented in Section 6 [CDR+22],
and it was ultimately abandoned after changes in the Travis CI pricing model in 2020. The sys-
tem tests aimed to test a large cross-product of combinations of operating system, compiler and
build options for preCICE, installation methods of preCICE, and simulation code combinations,
leading to combinatorial explosion. Most of these tasks were eventually offloaded to the CI of
the core library. They also aimed to check every kind of output, which meant maintaining sev-
eral in-house checking scripts, often needing to update the reference files or temporarily mark
individual tests as allowed to fail.

5 Design objectives

Having already looked at similar projects and having learned from previous attempts to design
system tests for preCICE, we define here our expectations from a better solution. These aim to
prevent issues faced mainly in the previous work discussed in Subsection 4.4 and in the current
state of (manual) testing at the project.

Open: In the current practice of the project, developers test release candidates by executing
simulations attached to research projects. These are often not publicly available at the
time of testing, and the exact testing procedure depends on the individual developer. This
involves trust and is prone to human error. To prevent that, the testing infrastructure should
be developed in the open and test reports should be public. The configuration also serves
as user documentation and the public reports increase transparency and provide continuous
evidence for the maintenance status of the project. Wherever possible, test cases should
also be maintained as tutorials, in the tutorials repository.

Extensive coverage: The tutorials that users run as examples also serve as test cases. However,
in the current state of the project, only a small subset of the tutorials is tested, as these are
manually executed. This often leads to uncaught issues either in specific features, or in

19 Previous preCICE system tests: https://github.com/precice/systemtests
20 preCICE Docker Hub: preCICE Docker Hub account: https://hub.docker.com/u/precice
21 Reports archive of the previous preCICE system tests: https://github.com/precice/precice st output
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specific tutorials. In a better solution, every code and tutorial that the user interacts with
should be part of the test suite, minimizing the blind spots for the developers.

Easy test case generation: Adding tests is often significant additional effort. At the same time,
preCICE users often share their simulation configurations in various ways, and these could
serve as test cases. If a tutorial or other published case setup is already available, integrat-
ing that to the system tests should require minimal additional work and no duplication.

Ability to run non-public tests and codes, on different systems: In simulation software, code
or data is sometimes only available under a restrictive license. In some cases, the simu-
lations need extensive resources, special hardware, or libraries only available on specific
systems. Therefore, the tests should be able to run on different systems. This does not
conflict with the first objective (openness), as everything is by default open, but the infras-
tructure should also handle non-open cases, whenever restrictions apply.

Avoid vendor lock-in: The previous attempt to create system tests for preCICE was ultimately
terminated by a policy change of the CI provider. Therefore, the tests should be easy
to execute on or port to different CI providers, to avoid a vendor lock-in. Similarly, the
solution should not rely on external resource providers (such as run servers or container
registries) that might impose usage limits beyond our control22.

Report results where expected: In the previous work, connecting the test reports with the state
of the code tested was particularly complicated. In a better solution, reports should be
easily discoverable (e.g., in the same pull request in an adapter repository, or in a subdi-
rectory in a local run). Looking at the history, it should be clear which tests failed when,
and where the full details are.

Avoid unnecessary rebuilds: Running a test for one component often means rebuilding many
other components of the stack as well. In the previous work, this meant rebuilding the
complete test stack for every test, even if only a small change in one component was
introduced. The testing infrastructure should implement caching mechanisms to avoid
unnecessary rebuilds of components already available.

Maintain as little code as possible: As we learned from the previous preCICE system tests, it
is difficult to maintain test-specific run scripts or in-house output checking scripts for file
formats that we do not control. A better solution should rely on established dependencies
and stable file formats, follow modularity, and avoid duplication.

22 It should be noted here that this is not a costs-saving policy, but rather a way to avoid the common organizational
overhead of paying for external services in academia.
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6 Proposed solution

We propose a framework for testing the preCICE ecosystem that addresses the challenges dis-
cussed in Section 3 and fulfills the design objectives listed in Section 5. We begin with an
overview of the overall architecture, and we dive deeper into specific ideas and technical details
in the following subsections. We demonstrate a concrete example with the respective specifica-
tion files in Section 7.

6.1 Overview

The framework comprises YAML-based specification files, Python scripts, and Dockerfiles,
stored directly in the preCICE tutorials repository23. This makes the tests easy to keep in synch
when adding or updating tutorial cases, and facilitates using tutorials as test cases, as well as
publishing test cases as tutorials. It also makes the tests and reference results directly available
to every user and developer from the same repository, allowing to easily run and modify them.
Specification files are stored in the directory of each tutorial, providing a machine-readable de-
scription of which coupling participants are available and which components are required24. The
specification files define components (e.g., adapters), tests that depend on these components, and
test suites that group tests together. The scripts filter the tests, prepare and run Docker containers,
compare the results, and archive reports. Figure 3 shows an overview of the architecture. The
documentation of the system tests is publicly available25.

6.2 Containerization and caching

To execute tests on a controlled and portable environment, we use Docker. Instead of building
one Docker image with every component required, as is common when testing single applica-
tions, we build one Docker container per coupling participant, and connect them using Docker
Compose26 (in which case, each container is a different service). This means that, to build one
component, we do not need to build other components that are not dependencies for it, saving
building time. An additional service provides the requested version of the tutorials repository.
After the simulation is done, a last service handles the comparisons to the reference results.

To avoid rebuilding upstream components that were not changed since previous tests, we use
a single, multi-stage Dockerfile27, describing the dependency graph of the ecosystem. A multi-
stage Dockerfile specifies named stages, which work similarly to intermediate images: They can
be defined as base images for other images, and we can copy files from them. This delegates the
caching to Docker itself, provided that the consecutive tests are running on the same system. To
take advantage of this feature, and to reduce the CI resource usage, the GitHub Actions workflow
executes the tests always on the same, self-hosted virtual machine (instead of directly using the
provided GitHub runners), which caches the Docker layers.

23 preCICE system tests scripts: https://github.com/precice/tutorials/tree/v202404.0/tools/tests
24 An example of this metadata is later shown in Listing 3.
25 preCICE system tests documentation: https://precice.org/dev-docs-system-tests.html
26 Docker Compose: https://docs.docker.com/compose/
27 Multi-stage Docker builds: https://docs.docker.com/build/building/multi-stage/

9 / 19

https://github.com/precice/tutorials/tree/v202404.0/tools/tests
https://precice.org/dev-docs-system-tests.html
https://docs.docker.com/compose/
https://docs.docker.com/build/building/multi-stage/


System Regression Tests for the preCICE Coupling Ecosystem

Figure 3: Overview of the system tests. A user triggers the system tests either locally or on
GitHub, or via a pull request on another, authorized repository on GitHub. A local run means di-
rectly running the script systemtests.py. A run on GitHub Actions runs the same script, and
it always runs it on the same, self-hosted VM, for easier caching. Depending on the components
needed for a test (for this test, direct dependencies are the OpenFOAM and FEniCS adapters), the
system tests build Docker containers and connect them as Docker Compose services, reusing any
available cached layers. The participants of the coupled simulation get coupled via preCICE.
For testing purposes, preCICE outputs VTK files with the data values on the interface, which
are then compared against reference results (stored in Git LFS) using fieldcompare. The results
comparison step can easily be extended to also compare other files in standard formats.

Since all preCICE components use Git as a version control system, it is important for caching
that we checkout specific versions (commits or tags) of each component. Checking out the latest
development branch will be detected as a (false) cache hit, since a Git branch does not correspond
to a fixed version. This issue can be resolved by automatically determining the latest commit of
each branch, before triggering the tests.

6.3 Local and CI runs

Tests can be executed locally or on the CI (manually, or triggered by other repositories). The
entry point of the system tests is the script systemtests.py, which takes as arguments the
names of the test suites to execute and a string of build arguments (mainly including which
versions of each component to use). Internally, this script calls docker build and docker
compose, redirects the screen output to a different log file per service, requests the comparison
of the results to the references, prepares a report, and archives artifacts.

The same script is executed in the CI of the tutorials repository via GitHub Actions. This is
triggered either manually (via the GitHub web interface or the GitHub CLI), or by other autho-
rized repositories (by adding a trigger-system-tests label to a pull request). As the CI
is only triggering a script (i.e., only the minimally required steps are included in the CI specifi-
cation), we minimize the vendor lock-in, and we make the tests easier to develop and debug. An
alternative approach would have been to use act28 to run the GitHub Actions locally, but such an

28 act: https://github.com/nektos/act
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approach would again increase the dependence on a specific CI resource provider.

6.4 Numerical comparisons

We learned already that trying to compare every kind of output (and especially as text) is a
moving target and requires additional comparison scripts to be developed, for output that might
be changing values and format between runs or over different versions of dependencies. Instead,
we have reduced the oracles to just the values of the exchanged data on the coupling interfaces.
As the tests we are executing are transient PDE simulations, even minor numerical errors in
the middle of the domain will cause disturbances to the coupling interfaces over time. These
values can be written by preCICE in a stable and standard VTK format29. We then numerically
compare these results to their references using fieldcompare30 [GKP+23], allowing for floating-
point errors. fieldcompare displays statistics about the files failing the comparisons, and it can
also export differences between the two meshes, to facilitate locating the source of errors.

In the future, we also want to archive and compare additional results about each simulation,
such as the number of coupling iterations and the respective residuals. These are also written
by preCICE as CSV files, and the framework can easily be extended to compare more standard
files, such as iteration counts and residuals from a CSV file.

6.5 Storing and versioning reference results

Reference results are generated by the testing framework on the test system, based on requested
versions of each component. In order to track changes, the results are stored as part of each
tutorial, in the same repository, using the Git Large File Storage system (LFS)31, which uploads
the files to a Git LFS server and stores identifiers instead of the files themselves in the source
repository. This allows the reference results to be updated in the same pull request that updates a
tutorial, without having to implement any additional versioning, and without polluting the source
repository with automatically generated artifacts. To work around resource limitations, and to
minimize vendor lock-in, we host a Git LFS server ourselves, using soft-serve32.

As users use tutorials as starting points to build their own simulations or couple their own
codes, a side effect of storing the reference results in the same directory is that users can easily
compare to them. This is particularly useful in the context of the replay mode of the artificial
solver testing environment, which can feed pre-recorded data to a coupling participant33.

6.6 Reporting and archiving

Each test job is executed in a time-stamped directory and redirects all screen output to log files.
At the end of a run tiggered by the CI, the complete run folder is archived and uploaded as a build
artifact, listed in the GitHub Actions summary. This includes a report summarizing the versions
of each component used, system information, and more metadata important for reproducibility,

29 preCICE exports: https://precice.org/configuration-export.html
30 fieldcompare: https://gitlab.com/dglaeser/fieldcompare
31 Git LFS: https://git-lfs.com/
32 soft-serve: https://github.com/charmbracelet/soft-serve
33 ASTE: https://precice.org/tooling-aste.html
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including a snapshot of the testing scripts themselves. Archives are directly related to the CI job
that executed the tests, and easily discoverable from the respective pull request, together with the
respective success status.

7 Demonstrating example

We present here an example of a system test, demonstrating the modularity and flexibility of the
testing specification. We first describe the structure of a test case. We then describe a component,
we define the test, and add it to a test suite. We trigger this test suite locally, and we finally trigger
this test suite from a GitHub pull request. As an example, we will use the already integrated flow
over a heated plate tutorial34. An overview of the files discussed in this section is shown in
Listing 1. More details are provided in the documentation35.

1 flow-over-heated-plate/ # Subsection 7.1, Listing 2
2 - <simulation configuration files>
3 - metadata.yaml # Subsection 7.1, Listing 3
4 - reference-results/ # Subsection 7.1
5 - fluid-openfoam_solid-fenics.tar.gz
6 - <further reference results>
7

8 tools/tests/
9 - components.yaml # Subsection 7.2, Listing 4

10 - component-templates/
11 - openfoam-adapter.yaml # Subsection 7.2, Listing 4
12 - <further component templates>
13 - dockerfiles/ubuntu_2204/
14 - Dockerfile # Subsection 7.2, Listing 5
15 - tests.yaml # Subsection 7.3, Listing 6
16 - systemtests.py # Subsection 7.4
17 - <further system tests scripts>
18

19 .github/workflows/ # Subsection 7.5, Listing 7
20 - run_testsuite_workflow.yml
21 - run_testsuite_manual.yml
22 - generate_reference_results_workflow.yml
23 - generate_reference_results_manual.yml

Listing 1: Overview of files discussed in the demonstrating example. All files are available on
https://github.com/precice/tutorials/tree/v202404.0.

34 Flow over a heated plate tutorial: https://precice.org/tutorials-flow-over-heated-plate.html
35 System tests documentation: https://precice.org/dev-docs-system-tests.html
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7.1 Structure of a preCICE tutorial

Every preCICE tutorial follows a structure described in the contributing guidelines36, with an ex-
ample shown in Listing 2. Each tutorial has two or more participants (one for each subdomain, in
this case a Fluid and a Solid), and one or more simulation code options for each participant
(in this case, Fluid can be OpenFOAM or SU2, while Solid can be OpenFOAM, FEniCS,
Nutils, or Dune-Fem). Each tutorial directory contains a README.md file, a preCICE config-
uration file, visualization and cleaning scripts, images, and one configuration directory for each
participant-code test case. In addition to these, each tutorial contains a metadata.yaml
file and a reference-results/ directory. This metadata.yaml provides a machine-
readable description of the tutorial, as shown in Listing 3. Reference results are named after the
specific combination of codes (e.g., fluid-openfoam and solid-fenics) that produced them and
include an automatically-generated description file regarding the setup that generated them.

1 flow-over-heated-plate/
2 - README.md # Description of the case
3 - precice.config.xml # A works-with-all preCICE configuration file
4 - fluid-openfoam/ # A concrete case for the Fluid participant
5 - run.sh # A short script to run the solver1 case
6 - <OpenFOAM config>
7 - fluid-su2/
8 - solid-dunefem/
9 - solid-fenics/

10 - solid-nutils/
11 - solid-openfoam/
12 - metadata.yaml # Metadata of the tutorial
13 - reference-results/ # Results for various combinations

Listing 2: Excerpt of the file tree of the flow-over-a-heated-plate tutorial

1 name: Flow over heated plate # Human-readable name
2 path: flow-over-heated-plate # Where this test case is located
3

4 participants: ['Fluid', 'Solid'] # List of coupling participants
5

6 cases: # List of simulation cases (options)
7 fluid-openfoam: # Arbitrary test case name
8 participant: Fluid # Which participant this corresponds to
9 directory: ./fluid-openfoam # Directory providing the configuration

10 run: ./run.sh # Commands to start the participant
11 component: openfoam-adapter # Direct component dependency of this case

Listing 3: Excerpt of a metadata.yaml of a tutorial (test case)

36 preCICE contributing guidelines: https://precice.org/community-contribute-to-precice.html#contributing-tutorials
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7.2 Components

Components are defined in a components.yaml file. Each component relates to a Docker
Compose service, and defines a Jinja-based template37 that the system tests use to generate a
docker-compose.yaml configuration. See Listing 4 for an excerpt of these files. Docker
Compose uses the multi-stage Dockerfile (Listing 5), and each component requests a specific
stage of that multi-stage build, which depends on different previous stages.

1 # Excerpt of the tutorials/tools/tests/components.yaml:
2 openfoam-adapter:
3 repository: https://github.com/precice/openfoam-adapter
4 template: component-templates/openfoam-adapter.yaml
5 build_arguments: # Arguments needed to build the service
6 PRECICE_REF: # ... Version of preCICE to use (a commit/tag)
7 PLATFORM: # ... Dockerfile platform used (e.g., ubuntu_2204)
8 TUTORIALS_REF: # ... Tutorial git reference to use
9 OPENFOAM_ADAPTER_REF: # ... OpenFOAM adapter git reference

10 OPENFOAM_EXECUTABLE: # e.g., openfoam2312
11

12 # tutorials/tools/tests/component-templates/openfoam-adapter.yaml:
13 build:
14 context: {{ dockerfile_context }} # Dockerfile to use
15 args: # Parse arguments from the components.yaml
16 target: openfoam_adapter # Dockerfile stage to build
17 volumes: # Working directory (owned by the current user)
18 - {{ run_directory }}:/runs
19 command: > # Commands to execute inside the container for this service
20 /bin/bash -c "id && cd '/runs/{{ tutorial_folder }}/{{ case_folder }}' &&
21 openfoam {{ run }} | tee system-tests_{{ case_folder }}.log 2>&1"

Listing 4: Definition of the openfoam-adapter component and Docker Compose service template

1 # Excerpt of the tutorials/tools/tests/dockerfiles/ubuntu_2204/Dockerfile
2 FROM ubuntu:22.04 as base_image
3 # ... (define stages base_image, precice_dependencies, precice)
4

5 FROM precice_dependecies as openfoam_adapter
6 # ... (install OpenFOAM, provide version-specific OPENFOAM_EXECUTABLE)
7 COPY --from=precice /home/precice/.local/ /home/precice/.local/
8 WORKDIR /home/precice
9 # Commands to get and build the specific version of the component

10 RUN git clone https://github.com/precice/openfoam-adapter.git && \
11 cd openfoam-adapter && git checkout ${OPENFOAM_ADAPTER_REF} && \
12 /usr/bin/${OPENFOAM_EXECUTABLE} ./Allwmake -j $(nproc)

Listing 5: Multi-stage Dockerfile, highlighting the openfoam adapter stage

37 Jinja: https://jinja.palletsprojects.com/
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7.3 Tests and test suites

With test cases at hand (via tutorials with a metadata.yaml), we can define actual tests and
group them into test suites in one central tests.yaml file (Listing 6). Remember that each
tutorial can be executed with a cross product of different participant options. A test specifies
which particular combinations of codes (test cases) will be coupled (which exactly will the sys-
tem under testing be) and which reference results will be used for regressions. Each test is then
included in one or more test suites. A test suite openfoam adapter pr would only execute
tests relevant for every pull request to the OpenFOAM adapter, while a release test suite
would include more tests and run for longer time.

Having a central file provides a clear overview of which tests will be executed when, and
makes pre-processing easier. At the moment, test cases can only be defined in the tutorials
repository, but this will be extended to allow sourcing test cases from different repositories (e.g.,
publication datasets or simulation setups with restrictive licenses).

1 # Excerpt of the tutorials/tools/tests/tests.yaml
2 test_suites: # A list of all test suites
3 openfoam_adapter_pr: # Arbitrary name for a test suite
4 tutorials: # Test case repository to look into
5 - path: flow-over-heated-plate # Directory inside the repository
6 case_combination: # Which code to execute for each
7 - fluid-openfoam # participant
8 - solid-openfoam
9 reference_result: "./flow-over-heated-plate/reference-results/\

10 fluid-openfoam_solid-openfoam.tar.gz"
11 release_test: # A longer test suite (...)

Listing 6: Definition of tests and test suites

7.4 Running locally

We can run the release test test suite locally on a laptop. This only requires Python and
Docker. To ensure that the right versions are tested, we have to specify them as build arguments:

python systemtests.py --build_args=PRECICE_REF:v3.1.1[,...] --suites=[...]

A concrete example using the versions described in the preCICE Distribution v2404.0 is:

python systemtests.py
--build_args="PRECICE_REF:v3.1.1,PYTHON_BINDINGS_REF:v3.1.0,

OPENFOAM_ADAPTER_REF:v1.3.0, FENICS_ADAPTER_REF:v2.1.0,
SU2_VERSION:7.5.1, SU2_ADAPTER_REF:64d4aff,
TUTORIALS_REF:v202404.0"

--suites=release_test

Having to provide exact versions for all components is definitely non-ergonomic, but it is cur-
rently necessary to avoid false cache hits. A potential solution is a preparation step mapping
from branches to specific commits, as in the gather-refs step in the GitHub Actions work-
flow discussed next.
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7.5 Triggering on GitHub Actions

The GitHub Actions workflow run testsuite workflow.yml of the tutorials repository
collects inputs (such as the versions to test), checks out the tutorials repository for a given Git
reference, executes the system tests as if running locally (in a hosted Linux runner), and uploads
the logs and results as build artifacts. A separate workflow, run testsuite manual.yml
can trigger the main workflow manually. This separation allows that the main workflow can be
triggered by other repositories, which must include an access token in their secrets. An example
is shown in Listing 7, where the CI of the OpenFOAM adapter is triggering the system tests in
the tutorials repository38. To avoid running the rather long system tests on every commit, the
tests are only triggered every time the trigger-system-tests label is added on the pull
request. Reference results are generated on the same system, using the corresponding workflows
generate reference results workflow.yml and its manual equivalent. These run
the tests, commit the results to the repository, and upload them to the Git LFS server.

1 # Excerpt from openfoam-adapter/.github/workflows/system-tests.yaml
2 on: pull_request: types: [labeled]
3

4 jobs:
5 gather-refs:
6 # Get the Git reference of the current tutorials develop branch
7 # using the nmbgeek/github-action-get-latest-commit action (...)
8

9 run-system-tests: # Execute when a label is added to the PR
10 if: ${{ github.event.label.name == 'trigger-system-tests' }}
11 needs: gather-refs # First wait for the gather-refs job to complete
12 uses: precice/tutorials/.github/workflows/run_testsuite_workflow.yml@dev
13 with: # Arguments for the reusable workflow
14 suites: openfoam_adapter_pr
15 build_args: TUTORIALS_REF:${{needs.gather-refs.outputs.reftutorials}},
16 PRECICE_REF:v3.1.1,OPENFOAM_EXECUTABLE:openfoam2312,
17 OPENFOAM_ADAPTER_REF:${{ github.event.pull_request.head.sha }}

Listing 7: Triggering the system tests from another repository. The workflow described in
run testsuite workflow.yml executes the same systemtests.py script, with the
arguments passed to it.

38 Example PR that has triggered this workflow: https://github.com/precice/openfoam-adapter/pull/333
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8 Conclusion and future work

Having compared testing practices of partially similar projects with the needs of preCICE, a
coupling ecosystem of components developed in different repositories, we can conclude that
testing preCICE poses additional challenges than usual, and serves as an interesting study case
for system and regression testing. We derived design objectives from these challenges and the
comparison to related work. The presented solution fulfills all the design objectives, which
previous approaches only partially fulfilled. The testing infrastructure is well-integrated into
the same examples that every user sees. Every tutorial with metadata can be considered as a
test by editing only one file. Components can be sourced by arbitrary Git repositories, while
the system can be extended to support test cases from external repositories. The tests can run
on any Docker-enabled system and use only established free/open-source dependencies, while
the code needed to integrate into GitHub Actions or any other CI provider is minimal, avoiding
vendor lock-in. Results are reported via the screen output and log files, while the GitHub Actions
workflows archive them as part of the respective test job. Caching of Docker layers minimizes the
time needed to re-run tests and, because of the multi-stage Docker builds and the separation of
one container per coupling participant, the cache can be effectively managed directly by Docker.
Finally, due to several design decisions, the code of the proposed solution is significantly simpler
and easier to maintain compared to the previous state, and updating the reference results is a
matter of triggering a workflow. Even though not designed as a stand-alone framework directly
portable to other projects, several of the ideas presented here can be easily applied to other
projects (especially with services-oriented components) to simplify their system regression tests.

The system tests have already been helpful in action, already discovering a bug that was not
previously visible by the routine release checks in the v3.1.0 release. Still, full-scale deployment
is pending, and the triggering mechanisms can be improved to not require prescribing the version
of each component, while still avoiding false cache hits. Testing can be more targetted with a
parameter matrix. Reporting can be even more transparent with job summaries and dashboards,
and local debugging of remote runs can be better facilitated. The test options, together with
the metadata, should be standardized with a configuration schema, which is part of a current
research project. In particular, an option to restrict the simulated time of a case could help to
partially integrate longer cases into the CI. Archiving and checking additional results (such as
number of iterations or runtime) could help discover more faults and performance regressions,
with the latter paving the way for running performance tests on HPC hardware.
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