
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

Improving reproducibility of scientific
software using Nix/NixOS: A case study on

the preCICE ecosystem
Max Hausch, Simon Hauser, Benjamin Uekermann

DOI: 10.14279/eceasst.v83.2613

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

https://doi.org/10.14279/eceasst.v83.2613
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/

ECEASST

Improving reproducibility of scientific software using Nix/NixOS: A
case study on the preCICE ecosystem

Max Hausch1∗, Simon Hauser1∗, Benjamin Uekermann1

1 Institute for Parallel and Distributed Systems
University of Stuttgart

benjamin.uekermann@ipvs.uni-stuttgart.de
∗ These authors contributed equally to this work.

Abstract: Ensuring reproducibility of scientific software is crucial for the ad-
vancement of research and the validation of scientific findings. However, achieving
reproducibility in software-intensive scientific projects is often challenging due to
dependencies, system configurations, and software environments. In this paper, we
present a possible solution for these challenges by utilizing Nix and NixOS. Nix is
a package manager and functional language, which guarantees that a package and
all its dependencies can be built reproducibly. NixOS is a purely functional Linux
distribution, built on top of Nix, which enables the build of reproducible systems
including configuration files, packages, and their dependencies. We study the po-
tential of Nix and NixOS by a case study on the reproducibility of the preCICE
ecosystem. preCICE is a coupling library for partitioned multiphysics simulations.
The ecosystem includes diverse legacy solvers, adapters, and language bindings be-
sides the coupling library itself making it a challenging and representative testcase.
We demonstrate how to create a reproducible and self-contained environment for
this ecosystem and discuss the benefits and limitations of using Nix and NixOS.

Keywords: Reproducibility, Nix, NixOS

1 Introduction

In scientific research, it is crucial to be able to reproduce and verify results. Reproducibility
ensures that experiments can be repeated and findings can be validated, which is essential for
reliable and credible research. However, achieving reproducibility in scientific software has
been a challenge due to complex dependencies, conflicting software environments, and chang-
ing software systems [Dal12]. Problems arise from dependencies, library versions, and system
configurations, leading to inconsistencies across different computing environments. Traditional
approaches to reproducibility, such as manual setup instructions or virtualization techniques, are
prone to errors and time-consuming at best.

Many scientists aim to solve this situation using Docker1 (e.g.,[KGS+23]), a software which
describes software environments with the help of text files. These text files are made up of
imperative commands, which are run inside of containers, one layer at a time. The result is
several different layers combined into a single output image, which can be instantiated into a

1 https://www.docker.com/

1 / 15

mailto:benjamin.uekermann@ipvs.uni-stuttgart.de
https://www.docker.com/

preCICE on Nix: A case study

running container. Docker images can be copied to different hosts and should then provide the
same environment on different machines. Those images are usually based on one of the official
Docker images2, however, which use traditional package managers, such as apt. When a user
then specifies to install the python3 package, for instance, a traditional package manager could
yield version 3.8 today, but version 3.9 in a few months. Full reproducibility can, thus, only be
achieved by storing the complete image. Altering a single dependency (e.g., by a bugfix) causes
a rebuild of the image and, thus, destroys reproducibility.

There are, moreover, commercial, domain specific solutions to achieve reproducibility, e.g.,
CodeOcean3 mainly for bioinformatics or Weights and Biases4 for machine learning. With
these archiving platforms, experiments can be rerun using technologies such as Docker. The
platforms are closed source, however, such that the source code cannot be reviewed nor ad-
justed [KGS+23].

In past years, the Nix package manager [DJV04] and NixOS [DLP10], a Linux distribution
built around it, have emerged as promising alternatives [DDS15]. Nix allows functional descrip-
tions of dependencies up to fixed versions, thus avoiding the issue described above. Similar
ideas are followed by the popular high performance computing (HPC) package managers Easy-
Build [HTGD12] and Spack [GLC+15]. At FOSDEM 2018, Kenneth Hoste compares Spack,
EasyBuild, and Nix with each other [Hos18]. Minor deficits regarding reproducibility of Spack
and EasyBuild are that they link against core system libraries, e.g., glibc, which can break inde-
pendently. The Spack developers are aware of these shortcomings and are working on improve-
ments5,6. EasyBuild, on the other hand, even has an option for linking against system libraries
called osdependencies7. Thus, packages need to be vetted and potentially updated prior to
usage. All three solutions have in common that they rely on scientific software following best
practices concerning building and packaging. Unfortunately, most legacy software projects do
not do this. This is why, for example, the xSDK community [xD23] tries to set a standard for
policies for math software.

In this paper, we analyze how well Nix and NixOS can improve reproducibility of scientific
software. To this end, we study the preCICE ecosystem [CDR+22] as an example. preCICE is a
coupling library for partitioned multiphysics simulations. The ecosystem includes diverse legacy
solvers, adapters, language bindings, and tutorials besides the coupling library itself making it a
challenging and representative testcase. We try to build the complete ecosystem using Nix and
run all tutorials. Section 2 briefly introduces the background of Nix and preCICE. Section 3 then
presents the case study including challenges, workarounds, and open problems. Afterwards, we
discuss the results in Section 4, followed by the conclusions in Section 5. This paper is the result
of a student research project and a streamlined version of its report [HH23]. Beyond the content
of this paper, the report also includes a detailed comparison of Nix to Spack and EasyBuild, and
a discussion on how to use Nix on HPC systems.

2 https://docs.docker.com/trusted-content/official-images/
3 https://codeocean.com/
4 https://wandb.ai/site
5 https://github.com/spack/spack/issues/39560
6 https://github.com/spack/spack/pull/42082
7 https://docs.easybuild.io/writing-easyconfig-files/#dependency specs

2 / 15

https://docs.docker.com/trusted-content/official-images/
https://codeocean.com/
https://wandb.ai/site
https://github.com/spack/spack/issues/39560
https://github.com/spack/spack/pull/42082
https://docs.easybuild.io/writing-easyconfig-files/#dependency_specs

ECEASST

Figure 1: The full dependency graph of the coreutils package, generated by
nix-store --query --graph $(nix build nixpkgs#coreutils
--print-out-paths) | dot -Tpng -Grankdir=LR -ocoreutils.png

2 Background

This section gives a short introduction into Nix and preCICE.

2.1 Nix

Nix is a purely functional package manager, which provides features to build software derivations
reproducibly. It does so, by recursively calculating a hash over all inputs of a derivation and its
dependencies to ensure the completeness of the whole derivation. If any of the inputs changes,
all dependent derivations have to be rebuilt. Fig. 1 shows the dependency graph of the coreutils
package as an example.

As Nix is purely functional, it relies on functions that, without side-effects, realize the package
derivations. Inputs of these functions are parameters such as the package version or the location
of the source code and its dependencies. Nix offers built-in functions for common build systems
and languages, such as CMake, Rust, Go, and Python by implementing different phases. Phases
are bash scripts and are always executed in the same order. They are predefined for each build
system, but can be overwritten if necessary.

For building packages, the four key phases are the configurePhase, the buildPhase,
the installPhase and the checkPhase. During the configurePhase, the build sys-
tem is configured. The buildPhase defines the build steps, such as calling make or cargo
build. Afterwards, the installPhase copies the results into the output directory. The
checkPhase can be enabled to run any tests. Most phases have a pre and post step, which can
be uses to make adjustments.

Evaluating these Nix functions with the same inputs yields the same outputs. This is a critical
factor for Nix’s reproducibility. Outputs, i.e. the build artifacts, never change after being built
once. Nix builds are, moreover, sandboxed, meaning that there is no internet access possible
during a build.

All contents, including source files and resulting build artifacts, are stored inside the Nix
store. Per default, the Nix store resides in the path /nix/store on the file system. The nam-
ing scheme for packages includes the above mentioned hash, for preCICE v2.5.0, for example,
/nix/store/0a5gw3l...-precice-2.5.0. This eases checking the Nix store for in-

3 / 15

preCICE on Nix: A case study

Figure 2: Software setup of preCICE from the preCICE website https://precice.org. The setup
shows a custom solver coupled to OpenFOAM and CalculiX for conjugate-heat transfer (CHT)
and fluid-structure interaction (FSI) simulations as an example.

tegrity and ensures that builds using the same inputs are performed only once. As all build
outputs reference their complete dependency graphs inside the Nix store, they do not interfere
with other build outputs, enabling installation of multiple versions of the same software without
conflicts.

Software patches are easy to apply in Nix. One can simply provide a list of .patch files as
inputs, Nix then includes the patch files in the build and in the calculation of the hash. Users can
override all inputs, so that every package can be flexibly adjusted.

2.2 preCICE

preCICE (Precise Code Interaction Coupling Environment) is an open-source software library
designed to facilitate coupling of different simulation software packages. It provides an API,
which allows different simulation tools to exchange data and work together in a collaborative
manner, enabling multi-physics as well as multi-scale simulations. In fact, many scientific simu-
lations require complex combinations of multiple solvers, each specialized in a particular aspect
of the problem. For example, in fluid-structure interaction problems, where fluid flow inter-
acts with deformable structures, separate solvers can be used to model the fluid dynamics and
structural mechanics.

preCICE supports a wide range of existing (Legacy) solvers. For each solver, there is typically
a specific adapter: an either independent software package or simply a source code patch that
integrates the preCICE API into the solver, see Fig. 2. The preCICE library itself is implemented
in C++, bindings to other languages are either supported through native bindings (C, Fortran) or
through independent software packages (Python, Julia, Matlab, Fortran). Many official adapters,
all bindings, the library itself, tutorials, additional tools, and the website including user docu-
mentation are collected and released in so-called preCICE distributions8. In our case study, we
target the distribution v2211.0 [CDD+23]. To execute simulations, such as the included tuto-
rials, the actual solvers are required besides the distribution. These are included, for example,
in the preCICE VM9 and also part of our case study. Table 1 lists all software packages of the
case study. We try to reproducibly build all of these packages with Nix and try to run all tutorial
cases. The diverse languages and diverse solver packages using various build system makes the
preCICE ecosystem a challenging testcase, which is, however, representative for current research

8 https://precice.org/installation-distribution.html
9 https://precice.org/installation-vm.html

4 / 15

https://precice.org
https://precice.org/installation-distribution.html
https://precice.org/installation-vm.html

ECEASST

Table 1: Software packages of the case study

Package Type Build system Version
preCICE library CMake 2.5.0
ASTE tooling CMake 3.0.0
Config visualizer tooling setup.py 60f2165
MATLAB bindings bindings matlab build script 2.5.0.0
Fortran module bindings make 9e3f405
Python bindings bindings setup.py 2.5.0.1
Julia bindings bindings julia 2.5.0
preCICE-CalculiX adapter solver + adapter Makefile 2.20
Code Aster solver custom system in python 14.6.0
Code Aster-preCICE adapter adapter custom system in python ce995e0
deal.II solver CMake 9.4.1
preCICE-deal.II adapter adapter CMake dbb25bea
DUNE-FEM solver library setup.py 2.8.0
preCICE-DUNE adapter adapter scripts + CMake 5f2364d
FEniCS solver library CMake + setup.py 2019.1.0
preCICE-FEniCS adapter adapter setup.py 1.4.0
Nutils solver library setup.py 7.0.0
OpenFOAM solver wmake/Allwmake 2206
preCICE-OpenFOAM adapter adapter wmake/Allwmake 1.2.1
preCICE-SU2 adapter solver + adapter patch script + Autoconf 6.0.0

software in our experience.

3 Case study

We now study the packaging of all components of the preCICE ecosystem one by one, including
challenges, solutions, and workarounds. We first look at preCICE itself, followed by additional
tooling and bindings. Afterwards, we study all solvers and their respected adapters. Next, we
show that Nix can also be used to generate iso files as well as qemu and Vagrant VM images.
Finally, we try running all preCICE tutorials. The Nix code for all components is available
online10 and can be used to download and run any of the presented packages.

3.1 preCICE

The preCICE library itself is already available in the nixpkgs repository11, so we do not have
to package the software. Looking at the package definition and the preCICE source code, the
library is quite easy to build and package as it uses CMake as a build system.

10 https://github.com/precice/nix-packages/releases/tag/deRSE24-paper-submission-v2
11 https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/development/libraries/precice/default.nix#L41

5 / 15

https://github.com/precice/nix-packages/releases/tag/deRSE24-paper-submission-v2
https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/development/libraries/precice/default.nix#L41

preCICE on Nix: A case study

3.2 Tools

The preCICE distribution includes two tools that enhance the preCICE user experience.
One of the tools is ASTE12, which stands for Artificial Solver Testing Environment. It is a

thin wrapper around the preCICE API, which allows, for instance, testing of data mapping with
real geometries. ASTE requires VTK13, a visualization toolkit, which is built without python
support in the nixpkgs repository to reduce compilation time. This feature is needed for ASTE,
however. As already mentioned, Nix allows overriding of inputs, so in this case, we can look at
the package definition of VTK. The parameter enablePython can simply be set to true. We
then also need to supply the version of python, which we set to python3.

The second tool is the preCICE config visualizer. As the name suggests, it visualizes preCICE
configuration files. Similarly to preCICE itself, the tool is already packaged upstream14. This
tool is easy to handle with Nix, as it is a python package.

3.3 Bindings

Bindings are used to offer interfaces to other programming languages.

3.3.1 MATLAB bindings

There were several attempts to package MATLAB15 for NixOS in the past16, yet there was no
success so far. This might be due to the fact, that MATLAB needs to be installed by running an
installation wizard that downloads files during the installation process and verifies the license.
As MATLAB has some licensing issues and is also not installed in the preCICE VM, we do not
proceed in packaging the preCICE bindings for the language.

3.3.2 Fortran module

We were able to package the Fortran module of preCICE by providing custom contents for the
buildPhase and the installPhase of Nix. The resulting binary could run the example
that comes with the module.

3.3.3 Python bindings

The pyprecice package is already available upstream, but does not compile as it is not able to find
the python module pkgconfig. After adding this single dependency as an input to the package
definition, the python package builds and can be used as expected. This solution was contributed
to the upstream nixpkgs repository17.

12 https://github.com/precice/aste
13 https://vtk.org/
14 https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/tools/misc/precice-config-visualizer/default.nix#L25
15 https://de.mathworks.com/products/matlab.html
16 https://github.com/NixOS/nixpkgs/issues/56887
17 https://github.com/NixOS/nixpkgs/commit/fd8962162ac21be59fc3a05fb6a250eeab6b2bec

6 / 15

https://github.com/precice/aste
https://vtk.org/
https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/tools/misc/precice-config-visualizer/default.nix#L25
https://de.mathworks.com/products/matlab.html
https://github.com/NixOS/nixpkgs/issues/56887
https://github.com/NixOS/nixpkgs/commit/fd8962162ac21be59fc3a05fb6a250eeab6b2bec

ECEASST

3.3.4 Julia bindings

Julia [BEKS17] support in NixOS is currently still in its early stages and cannot be declaratively
defined by Nix at the current state18.

3.4 Solvers and adapters

3.4.1 CalculiX

The preCICE adapter for the structural mechanics code CalculiX [UBC+17] requires the original
CalculiX source code and provides a new Makefile in the adapter repository. By default, this
Makefile expects the source code to reside in $HOME, but it is possible to override this location
with a make variable. It then builds the original code and the adapter code together, resulting in
a combined binary.

The Makefile also has hard-coded locations of its dependencies: SPOOLES, ARPACK, and
yaml-cpp. These need to be replaced with the equivalent pkg-config calls. Additionally, there is
no install target provided by the Makefile, thus the resulting binary needs to be installed manually
by copying it to the $out placeholder, which maps to the resulting store path.

3.4.2 Code Aster

The Code Aster-preCICE adapter [UBC+17] is a python file, which needs to be placed in the
Code Aster lib directory. For this, the Code Aster solver needs to be packaged at version 14.6.
It uses a custom build system based on a setup.py file, which invokes build and install phases
for dependencies and in the end for the solver itself.

The Code Aster package distributes its dependencies as pinned tarballs. On Nix, almost none
of these dependencies complete the build stage. We, thus, need to pull them, package them sep-
arately as Nix packages, and configure the build system with a setup.cfg. In this file, we are
able to disable the installation of the pinned dependencies and provide paths to the dependencies
instead.

More precisely, we disable HDF5, as it is already packaged in the upstream nixpkgs reposi-
tory, even at the required version 5.1.10. Additionally, Code Aster requires Medfile and Scotch,
which are both available upstream and can be used as dependencies. Another dependency is
METIS, which partially builds. Thus, we decide to not replace it, but to fix the remainder of the
build. The issue is precisely that the CMakeLists.txt for the METIS programs hard-codes
link directories to /home/karypis/local/lib. We unpack the METIS tarball,
remove this line with sed, and repack the directory.

The remaining two dependencies, Mumps and Tfel are not available upstream and need to be
packaged. Mumps uses a Makefile and can be configured using Makefile.inc. We write
our own custom Makefile.inc by providing the locations for dependencies, such as Scotch,
METIS, ParMETIS, or Blacs. Almost all dependencies are available upstream, but we need to
recompile Scotch with additional build flags. Moreover, for packaging Blacs, which also uses a
Makefile, we configure the build using a custom Bmake.inc file, which is used to set compiler

18 https://github.com/NixOS/nixpkgs/issues/20649

7 / 15

https://github.com/NixOS/nixpkgs/issues/20649

preCICE on Nix: A case study

flags, the path to MPI, and the bash installation. Tfel, on the other hand, uses CMake as build
system making it easy to package it with Nix.

After successfully packaging all dependencies, the buildPhase of Code Aster completes,
but the installation part has another issue, which also affects new versions of Ubuntu and other
distributions using a python version greater than 3.9. There is a forum post19 without resolution,
so we need to manually patch the bug. The issue is precisely, that the custom build system does
not correctly calculate the python site-packages directory. It unconditionally slices the first 3
chars from sys.version, which works for python version 3.9.x, but not for version 3.10.x.
After patching, Code Aster successfully installed into $out/14.6/, so we move around some
files until we have a valid directory structure with $out/bin, $out/lib, providing symlinks
for $out/14.6/ and $out/stable/.

3.4.3 deal.II

To package the deal.II-preCICE adapter, we first need to package deal.II [ABB+23] itself, which
uses CMake as build system and works without any adjustments. The same then applies for the
adapter, which also uses CMake. As an example for the Nix language, we provide the Nix code
for the deal.II-preCICE adapter in Fig. 3.

3.4.4 DUNE

DUNE [BBD+21] uses a combination of CMake files and custom build scripts making the build
process in Nix tedious. There is an ongoing migration from Autotools to CMake for DUNE,
which might improve the situation in the future. Another minor issue is that the DUNE project
is rather a collection of repositories than a monorepo. This means, users have to correctly
clone all repositories such that the build system finds all relevant information. We clone all
of the required DUNE repositories into a directory and additionally clone the DUNE-preCICE
adapter into the same directory. For the build and install process, we need to manually set
the $DUNE CONTROL PATH and the $DUNE PY DIR environment variables. Additionally, we
need to patch the python install process because the current CMake file tries to access the inter-
net with pip install, which is not allowed in Nix’s sandboxed builds. The two environment
variables must also be set at run-time. This can be achieved by sourcing the set-dune-vars
script, which we provide.

3.4.5 FEniCS

FEniCS [fen12] is already packaged upstream, however, not with all features the FEniCs-preCICE
adapter [RDH+21] relies on, in particular PETSc support and mshr, the FEniCS mesh generator.
This is why we need to package PETSc4py, the python bindings package of PETSc, which is not
available upstream. The build process uses the internal buildPythonApplication build
tool and runs successfully once we add the option build src --force to rebuild cython
code and pin the cython version to 0.29.34 20. We could not enable tests for PETSc4py, however,

19 https://forum.code-aster.org/public/d/26475-problem-installing-code-aster-version-14-6/11
20 https://gitlab.com/petsc/petsc/-/issues/1359

8 / 15

https://forum.code-aster.org/public/d/26475-problem-installing-code-aster-version-14-6/11
https://gitlab.com/petsc/petsc/-/issues/1359

ECEASST

{
Inputs including nix functions/packages or additional flags
lib, stdenv, fetchFromGitHub, cmake, dealii,
Optional features that users can enable when overriding
enable3d ? false

}:
stdenv.mkDerivation rec {

pname = "precice-dealii-adapter";
version = "unstable-2022-09-23"; # could also be a git tag

src = fetchFromGitHub { # Defining where to get the source from
owner = "precice"; repo = "dealii-adapter";
rev = "dbb25...8367c"; sha256 = "sha256-pPQ2...2jlflgUE=";

};

dependencies only available at build-time
nativeBuildInputs = [cmake];
dependencies that also need to be installed at run-time
mostly libraries needed for linking and for execution
buildInputs = [precice dealii];

cmakeFlags = lib.optionals enable3d ["-DDIM=3"];

nix’ default phases can be overwritten such as:
installPhase = ’’

$out contains the final path inside the nix store.
The resulting build files are copied into this directory
mkdir -p $out/bin && cp elasticity $out/bin/elasticity

’’;
}

Figure 3: Nix code to package the deal.II-preCICE adapter

9 / 15

preCICE on Nix: A case study

because they depend on OpenMPI and the network, which is not available within Nix’s build
sandbox. Afterwards, we specify PETSc4py as dependency for FEniCS and enable the PETSc
support. Additionally, we need to recompile PETSc with additional features enabled that are not
enabled by the upstream Nix package. These include ParMETIS, HYPRE and ScaLAPACK. We
use overrideAttrs, a Nix feature that allows us to change an existing package. Lastly, we
also package mshr, so all required features for the adapter package are now are available.

Building the FEniCS-preCICE adapter is now directly possible with buildPythonPackage.
We then validate the correctness by including an import check as well as successfully running
the full test suite.

3.4.6 Nutils

The Nutils [ZZH22] solver can be built using buildPythonPackage. One test needs to be
disabled, but the rest of the testsuite passes without issues. There is no dedicated Nutils-preCICE
adapter, but preCICE is typically directly called from Nutils application scripts.

3.4.7 OpenFOAM

The preCICE-OpenFOAM adapter [CSU23] supports multiple flavors of OpenFOAM. We re-
strict our analysis to the OpenFOAM fork of OpenCFD Ltd21.

OpenFOAM uses its own custom build system called wmake, which is typically called with
a Allwmake wrapper script. The build system sets 36 environment variables, one step at a time
by checking several parameters, e.g. the CPU architecture or the location of the source code.
Also during run-time, these variables need to be set, either by a wrapper script or by manually
sourcing a file inside the installation directory of OpenFOAM. For Nix, these properties are un-
fortunate. To compile OpenFOAM with Nix, we need to patch the shebangs22 of wmake to make
it run during the build. We also use a shell script which exports the environment variables to the
current shell session. For simplicity, we hard-code all parameters, such as the processor archi-
tecture. These could be parametrized, however, based on the Nix inputs to allow for optimized
builds. We use the script during the buildPhase to source all variables such that, for exam-
ple, OPENFOAM SRC PATH points to the default location /build/openfoam. Afterwards,
./Allwmake -j -q is sufficient to start the build. The installPhase then copies the
necessary files and directories to $out, replaces the mock OPENFOAM SRC PATH by the value
of $out, and creates a wrapper for the openfoam shell script.

The preCICE-OpenFOAM adapter is an OpenFOAM function object, requiring OpenFOAM
and wmake as build inputs. The environment variables have to be set again through the shell
script mentioned above. Afterwards, we set the target directory for the adapter to $out/lib/
as the adapter is a shared library. Building then works successfully.

21 https://www.openfoam.com/
22 https://foldoc.org/shebang

10 / 15

https://www.openfoam.com/
https://foldoc.org/shebang

ECEASST

3.4.8 SU2

The SU2-preCICE adapter [UBC+17] patches and extends the original CFD code SU2 [PCA+13].
To this end, the adapter provides a script to run before the buildPhase. We do this in Nix’
patchPhase, which is responsible for patching the source before running the buildPhase.
Afterwards, stdenv automatically recognizes that SU2 uses Autotools for building and runs the
configurePhase. Finally, to find the preCICE installation, we need to set the configuration
flags --with-include and --with-lib.

Since preCICE distribution v202404, this adapter is replaced by a python-based solution

3.5 preCICE VM

The current preCICE VM23 is built on top of Vagrant24 using Ubuntu as a base image. When
provisioned for the first time, it further installs software, compiles programs, and clones the
preCICE tutorials25. This means that we only have reproducibility when fetching the VM from
vagrant cloud 26, as we can not rebuild the VM from scratch, because the provision step currently
fetches files from the internet that are at this very point in time the latest version, i.e. the main
branch of the preCICE repository rather than a pinned tag or commit. Making us dependent on
vagrant cloud to continue to serve the box.

Nix comes with the built-in functionality of producing qemu27 VM images. We use Nix to
define a VM image with NixOS as a base, which can be built reproducibly. The image contains
all components of the case study and some additional custom tools that can only be seen in the
official VM28, such as the preciceToPNG command. Also, we generate an iso and a Vagrant
VirtualBox file of the VM as additional outputs.

3.6 preCICE tutorials

The preCICE tutorials included in the distribution cannot only be used as reference examples on
how to couple different solvers, but also to verify functionality of solver and adapter installations
by executing them. To this end, we execute all 23 tutorials of the distribution such that each
coupled solver option is at least run once. We do not compare results, but only test whether the
cases complete. We test inside the NixOS VM and also in an ad-hoc shell environment provided
by the nix develop command. All tests pass except the Turek-Hron FSI3, parts of the par-
titioned heat conduction, parts of the perpendicular flap, and the flow over heated plate steady
state cases. We could not build swak4foam, an add-on to OpenFOAM, which is needed in the
Turek-Hron FSI3 tutorial and the OpenFOAM solver of the partitioned heat conduction tutorial.
The official preCICE VM uses a prebuilt version of swak4foam, but also patching the prebuilt bi-
nary did not work. The dependency is, however, no longer required in the v202404.0 release29 of

23 https://precice.org/installation-vm.html
24 https://www.vagrantup.com/
25 https://github.com/precice/tutorials/
26 https://app.vagrantup.com/precice/boxes/precice-vm
27 https://www.qemu.org/
28 https://github.com/precice/vm
29 https://precice.org/installation-distribution.html#v24040

11 / 15

https://precice.org/installation-vm.html
https://www.vagrantup.com/
https://github.com/precice/tutorials/
https://app.vagrantup.com/precice/boxes/precice-vm
https://www.qemu.org/
https://github.com/precice/vm
https://precice.org/installation-distribution.html#v24040

preCICE on Nix: A case study

the preCICE distribution. We could, moreover, not package the third-party solids4foam solver,
which is one of many options in the perpendicular flap tutorial. The flow over heated plate steady
state tutorial requires Code Aster. Even though we manage to package the solver, we observe a
segmentation fault at run-time when the python code tries to call a Fortran subroutine – a problem
we did not manage to debug.

4 Discussion

After detailing the challenges of building and packaging all components of the preCICE ecosys-
tem and running the tutorials as testcases, we want to discuss common points between these
scientific software packages. The required effort to package the individual components varies
drastically. Major problems can be traced back to the build system. Custom build systems re-
quire an disproportional amount of additional work to make them runnable on any system. Open-
FOAM and Allwmake are prime examples of this issue. Package managers have to understand
a whole new build system for a single package – a fact that is often ignored when considering
the trade-off between maintaining a custom build system versus pivoting to an industry standard,
such as CMake or Autotools. Such standard build tools generally provide interfaces for depen-
dency management and optional features. This is often better than only documenting these, since
documentation needs to be kept in sync with the underlying code.

The authors of xSDK30 come to a similar conclusion. They provide a list of package poli-
cies [xD23], which, for example, specify that packages must have an appropriate build system,
which includes CMake and Autotools as examples. If a package supports all policies, they can
be added to the growing list of packages in xSDK. It is no surprise that xSDK packages (e.g.,
PETSc, deal.II, or preCICE) are also easy to package with Nix.

The xSDK policies also requires portable installations. Several components in the preCICE
ecosystem require installation into $HOME or any required files to be located at specific locations.
Both, the CalculiX-preCICE adapter and the SU2-preCICE adapter require the original source
code to be present as they add new features on top or patch the source code. The current solution
of requiring to clone the code into a specific directory works, but it might be better to look into
Git submodules, as this would result in a more portable solution. This would, moreover, allow
pinning the version of the original code compared to only documenting it.

Finally, hard-coding libraries to /usr/lib and /usr/includemight work on one system,
but might make it hard or even impossible to install a package on a different system. Configurable
solutions, such as pkg-config, should always be preferred and work out of the box with common
paths such as /usr/lib.

5 Conclusion

We investigated on whether Nix und NixOS are a potential solution to enable full reproducibility
of research software environments. As a case study, we tried to package and test all components
of the preCICE ecosystem – a very heterogeneous set of legacy software packages, which is,

30 https://xsdk.info/

12 / 15

https://xsdk.info/

ECEASST

however, representative for the state of research software today in our experience.
Out of the 20 components of the preCICE distribution, we were able to package 14 compo-

nents ourselves, four were already packaged upstream, and two were not packageable in their
current state. In total, there are 22 tutorials in the preCICE v2211 distribution, many having
several different coupled solvers, resulting in a total of 60 coupled solvers. We were able to run
52 out of these. Many packages required workarounds, however, which might be difficult to
achieve for non-experienced Nix users. Nix also comes with a few peculiarities, which compli-
cate workarounds. In fact, every piece of software has to lie within /nix/store and each path
therein is its own-isolated tree inspired by the Filesystem Hierarchy Standard (FHS).

Most problems, however, can be traced back to a lack of standardization in research soft-
ware, especially regarding build systems. Software packages that follow best practices for their
programming language are also straightforward to package. The xSDK initiative defined such
standardization policies for math software. Components of the preCICE ecosystem that already
adhere to this standard, were among the easiest ones to package – even though xSDK ultimately
targets Spack and not Nix.

Despite encountering challenges in packaging the numerous software tools, we were able to
observe the adaptability of the Nix package manager. Our results indicate that, in general, Nix
is a suitable solution for reproducing software environments and a viable solution to package
management in a scientific domain.

Acknowledgements: We thankfully acknowledge the funding by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC
2075 – 390740016 and under project number 528693298, and the support by the Stuttgart Center
for Simulation Science (SimTech).

Bibliography

[ABB+23] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, T. Heister,
L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin, D. Wells,
S. Zampini. The deal.II Library, Version 9.5. Journal of Numerical Mathematics
31(3):231–246, 2023.
doi:10.1515/jnma-2023-0089

[BBD+21] P. Bastian, M. Blatt, A. Dedner, N.-A. Dreier, C. Engwer, R. Fritze, C. Gräser,
C. Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger, O. Sander. The DUNE Frame-
work: Basic Concepts and Recent Developments. Computers & Mathematics with
Applications 81:75–112, 2021.
doi:10.1016/j.camwa.2020.06.007

[BEKS17] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah. Julia: A fresh approach to nu-
merical computing. SIAM review 59(1):65–98, 2017.
doi:10.1137/141000671

[CDD+23] G. Chourdakis, K. Davis, I. Desai, B. Rodenberg, D. Schneider, F. Simonis, B. Uek-
ermann, B. Ariguib, P. Cardiff, A. Jaust, P. Kharitenko, R. Klöfkorn, N. Kotarsky,

13 / 15

http://dx.doi.org/10.1515/jnma-2023-0089
http://dx.doi.org/10.1016/j.camwa.2020.06.007
http://dx.doi.org/10.1137/141000671

preCICE on Nix: A case study

B. Martin, E. Scheurer, V. Schüller, G. van Zwieten, K. Yurt. preCICE Distribution
Version v2211.0. 2023.
doi:10.18419/darus-3576

[CDR+22] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann,
G. Abrams, H. Bungartz, L. Cheung Yau, I. Desai, K. Eder, R. Hertrich, F. Lind-
ner, A. Rusch, D. Sashko, D. Schneider, A. Totounferoush, D. Volland, P. Vollmer,
O. Koseomur. preCICE v2: A sustainable and user-friendly coupling library [version
2; peer review: 2 approved]. Open Research Europe 2(51), 2022.
doi:10.12688/openreseurope.14445.2

[CSU23] G. Chourdakis, D. Schneider, B. Uekermann. OpenFOAM-preCICE: Coupling
OpenFOAM with external solvers for multi-physics simulations. OpenFOAM®
Journal 3:1–25, 2023.
doi:10.51560/ofj.v3.88

[Dal12] O. Dalle. On reproducibility and traceability of simulations. Proceedings - Winter
Simulation Conference, 2012.
doi:10.1109/WSC.2012.6465284

[DDS15] A. Devresse, F. Delalondre, F. Schürmann. Nix based fully automated workflows
and ecosystem to guarantee scientific result reproducibility across software environ-
ments and systems. In Proceedings of the 3rd International Workshop on Software
Engineering for High Performance Computing in Computational Science and Engi-
neering. ACM, 2015.
doi:10.1145/2830168.2830172

[xD23] xSDK Developers. xSDK Community Package Policies 1.0.0. 2023.
doi:10.6084/m9.figshare.13087196.v1

[DJV04] E. Dolstra, M. de Jonge, E. Visser. Nix: A Safe and Policy-Free System for Software
Deployment. In Proceedings of the 18th USENIX Conference on System Administra-
tion. LISA ’04, p. 79–92. USENIX Association, USA, 2004.
doi:10.5555/1052676.1052686

[DLP10] E. Dolstra, A. Löh, N. Pierron. NixOS: A purely functional Linux distribution. Vol-
ume 20(5-6), p. 577–615. Cambridge University Press, 2010.
doi:10.1017/S0956796810000195

[fen12] Automated Solution of Differential Equations by the Finite Element Method: The
FEniCS Book. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-23099-8

[GLC+15] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supin-
ski, S. Futral. The Spack package manager: bringing order to HPC software chaos.
In SC15: International Conference for High-Performance Computing, Networking,
Storage and Analysis. Pp. 1–12. IEEE Computer Society, Los Alamitos, CA, USA,

14 / 15

http://dx.doi.org/10.18419/darus-3576
http://dx.doi.org/10.12688/openreseurope.14445.2
http://dx.doi.org/10.51560/ofj.v3.88
http://dx.doi.org/10.1109/WSC.2012.6465284
http://dx.doi.org/10.1145/2830168.2830172
http://dx.doi.org/10.6084/m9.figshare.13087196.v1
http://dx.doi.org/10.5555/1052676.1052686
http://dx.doi.org/10.1017/S0956796810000195
http://dx.doi.org/10.1007/978-3-642-23099-8

ECEASST

2015.
doi:10.1145/2807591.2807623

[HH23] M. Hausch, S. Hauser. Improving reproducibility of scientific software using
Nix/NixOS. Technical report, University of Stuttgart, 2023.
https://github.com/precice/nix-packages/releases/tag/initial-paper-release

[Hos18] K. Hoste. Installing software for scientists on a multi-user HPC system. FOSDEM,
2018.
https://archive.fosdem.org/2018/schedule/event/installing software for scientists/

[HTGD12] K. Hoste, J. Timmerman, A. Georges, S. De Weirdt. EasyBuild: Building Software
with Ease. In 2012 SC Companion: High Performance Computing, Networking Stor-
age and Analysis. Pp. 572–582. 2012.
doi:10.1109/SC.Companion.2012.81

[KGS+23] T. Koch, D. Gläser, A. Seeland, S. Roy, K. Schulze, K. Weishaupt, D. Boehringer,
S. Hermann, B. Flemisch. A sustainable infrastructure concept for improved acces-
sibility, reusability, and archival of research software. 2023.
doi:10.48550/arXiv.2301.12830

[PCA+13] F. Palacios, M. Colonno, A. Aranake, A. Campos, S. Copeland, T. Economon,
A. Lonkar, T. Lukaczyk, T. Taylor, J. Alonso. Stanford University Unstructured
(SU2): An open-source integrated computational environment for multi-physics
simulation and design. 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition 2013, 2013.
doi:10.2514/6.2013-287

[RDH+21] B. Rodenberg, I. Desai, R. Hertrich, A. Jaust, B. Uekermann. FEniCS–preCICE:
Coupling FEniCS to other simulation software. SoftwareX 16:100807, 2021.
doi:10.1016/j.softx.2021.100807

[UBC+17] B. Uekermann, H.-J. Bungartz, L. Cheung Yau, G. Chourdakis, A. Rusch. Official
preCICE Adapters for Standard Open-Source Solvers. In Proceedings of the
7th GACM Colloquium on Computational Mechanics for Young Scientists from
Academia. 2017.
https://www.gacm2017.uni-stuttgart.de/registration/Upload/ExtendedAbstracts/
ExtendedAbstract 0138.pdf

[ZZH22] J. S. B. van Zwieten, G. J. van Zwieten, W. Hoitinga. Nutils. Feb. 2022.
doi:10.5281/zenodo.6006701

15 / 15

http://dx.doi.org/10.1145/2807591.2807623
https://github.com/precice/nix-packages/releases/tag/initial-paper-release
https://archive.fosdem.org/2018/schedule/event/installing_software_for_scientists/
http://dx.doi.org/10.1109/SC.Companion.2012.81
http://dx.doi.org/10.48550/arXiv.2301.12830
http://dx.doi.org/10.2514/6.2013-287
http://dx.doi.org/10.1016/j.softx.2021.100807
https://www.gacm2017.uni-stuttgart.de/registration/Upload/ExtendedAbstracts/ExtendedAbstract_0138.pdf
https://www.gacm2017.uni-stuttgart.de/registration/Upload/ExtendedAbstracts/ExtendedAbstract_0138.pdf
http://dx.doi.org/10.5281/zenodo.6006701

	Introduction
	Background
	Nix
	preCICE

	Case study
	preCICE
	Tools
	Bindings
	MATLAB bindings
	Fortran module
	Python bindings
	Julia bindings

	Solvers and adapters
	CalculiX
	Code_Aster
	deal.II
	DUNE
	FEniCS
	Nutils
	OpenFOAM
	SU2

	preCICE VM
	preCICE tutorials

	Discussion
	Conclusion

