
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

Collaborative software development to
disentangle counterproductive incentives

Fynn Freyer, Paul Wolk, Marie Bittiehn, Berit Haldemann, Marie Lataretu, Stephan
Fuchs, Piotr Wojciech Dabrowski

DOI: 10.14279/eceasst.v83.2612

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

https://doi.org/10.14279/eceasst.v83.2612
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/


ECEASST

Collaborative software development to disentangle
counterproductive incentives

Fynn Freyer1∗, Paul Wolk2,∗ Marie Bittiehn1∗, Berit Haldemann2, Marie
Lataretu2, Stephan Fuchs2+, Piotr Wojciech Dabrowski1+

School of Computing, Communication and Business (Faculty 4), HTW Berlin University of
Applied Sciences1

Genome Competence Center (MF1), Robert Koch Institute2

* These authors contributed equally
+ These authors also contributed equally

Abstract:
Background: We propose a collaborative approach to address the conflicting in-
centives between software development (generating high-quality code) and research
(rapidly generating scientifically interpretable results).
Approach: A data analysis pipeline has been developed driven by current research
needs and following software engineering best practices in a pilot collaboration be-
tween scientists from the Genome Competence Center at the Robert Koch Institute
(RKI) and the computer science programs at HTW University of Applied Sciences.
The challenges and benefits of such collaborations are discussed in the context of
increasing the quality of research software.
Conclusion: This approach has led to the development of a new quality control
pipeline following software engineering best practices: Coding conventions, an ex-
tensive test suite, version control with branching guidelines and gated commits, and
automated reproducible builds. Our experiences highlight the benefits of such col-
laborations, and we hope to encourage others to follow similar approaches in order
to facilitate the development of high-quality research software. The newly devel-
oped QC pipeline is available online on Azure [qcu] and v.1.1.3 is available on
zenodo [FWH+24].

Keywords: Collaborative development, research software engineering, bioinfor-
matics, computer science education, synergy, quality control pipeline

1 Introduction

As the world in general and research specifically largely depends on software, that software
should be developed in a sustainable manner, meaning that it “continues to meet its purpose over
time, which includes that the software adds new capabilities as needed by its users, responds to
bugs and other problems that are discovered, and is ported to work with new versions of the un-
derlying layers, including software as well as new hardware” [KM21]. However, pure software
development and research are naturally driven by different incentives. While the main aim of
software development should be the generation of a reliable, easily maintainable and sustainable

1 / 9



Collaborative software development to disentangle counterproductive incentives

product, the daily life of a researcher is dominated by the quest for accurate, reproducible state-
of-the-art analysis results and by publication deadlines. This discrepancy is one of the driving
forces behind the Research Software Engineering (RSE) community and has been described in
detail in [ABD+21]. While sustainable long-term solutions are presented in that paper, their
implementation requires changes to such complex systems as funding programmes or the eval-
uation of the value of scientific contributions. As such changes take a long time to implement,
there is still a need for approaches that can help increase the quality of research software in the
short to medium term.

The workplace of the Research Software Engineer is exactly in this area of conflict: Devel-
oping sustainable software for rapidly moving and publication-focused research. Depending
on the institution, this is usually achieved by either having RSEs directly integrated in the re-
search groups to maximize the expertise in the field where the software will be applied, or by
creating central RSE groups that provide services to the entire institution and allow synergies
from many RSEs working in a shared environment [CW20]. Additionally, building communities
where RSEs share their knowledge can blur the lines between these approaches and combine the
benefits of both [SKM+18].

As an extension of a central RSE group, that group can provide services to collaborating
partners beyond its own institution. Successful examples include the Innovative Software and
Data Analysis group at the University of Illinois or the Center for Research Computing Software
Development Group at the University of Notre Dame [KMRH19].

We present a possible path towards seeding such an RSE group that is focused on external
collaborations in order to isolate the software engineering process from the volatility of day-to-
day research work. To this end, two different entities driven by different incentives work closely
together: The team at the Genome Competence Center of the Robert Koch Institute (RKI) and the
applied computer science bachelor’s and master’s study programs of the HTW Berlin University
of Applied Sciences.

The Genome Competence Center provides consulting and analyses to other research units
within the RKI. The bioinformaticians working at the unit are fully qualified and experienced
computer scientists with the knowledge and skills necessary for the development of high-quality
software. However, the primary focus is on the reliable generation, processing, and visualization
of analysis results, typically through prototypical workflows. Due to capacity constraints, best
practices from software engineering often receive insufficient attention.

On the other hand, the HTW has access to a large number of computer science students with a
high interest in software development, such as Applied Computer Science, Computer Engineer-
ing, Computer Science in Culture and Health or Health Electronics. As such, they are a perfect
resource for developing research software that is focused on reproducibility, scalability and sus-
tainability. However, there are two challenges to overcome when working with computer science
students who want to develop research software: Firstly, access to realistic questions and data is
hard to come by, and developing software that solves a self-posed problem using simulated data
is not very satisfying. Secondly, students are only available during the short time frames defined
by the duration of their projects.

Given that those challenges and opportunities show high potential for synergy, RKI and HTW
have established a cooperation for research software engineering. In short, the daily challenges
and requirements concerning analysis software are discussed in semi-regular joint meetings.

2 / 9



ECEASST

Work packages and research questions (such as the comparison of different algorithms) are
jointly defined and prioritized. Then, those are given out to students at the HTW in the form
of projects or final theses. The results are continuously combined and evaluated at the RKI, and
flow back into the work package definitions. In order to create a sustainable and continuous
environment in which those work packages can be integrated, a single position is co-financed by
the RKI and the HTW to supervise and coordinate the entire process.

In this way, a new bioinformatics pipeline to evaluate the quality of Illumina sequencing data
(QCurchin) was developed that combines state-of-the-art bioinformatics methods with essential
principles of good software engineering. QCurchin is currently productively used at the RKI.
We hope that our experiences, both positive and negative, will encourage others to enter and
profit from similar synergetic relationships. The details of the approach and the resulting quality
control pipeline are described on the following pages, in the hope that this will motivate and
facilitate other similar cooperations.

2 Case description

The RKI is the national Public Health Institute in Germany. As such, research on and surveil-
lance of infectious diseases belong to its main objectives. Next Generation Sequencing (NGS),
which was initially introduced at the RKI in 2006 in the unit focused on highly pathogenic viruses
(ZBS1), is playing an increasingly important role in this context. Given the growing importance
and application of NGS for public health-related tasks, a central sequencing core facility was
established at the RKI in 2017. In 2022, both sequencing and bioinformatics core facilities were
merged to form the Genome Competence Center, providing integrated sequencing data and anal-
yses.Currently, tens of thousands of samples are processed annually using various technologies
in the fields of genome, expression, metagenome, and single-cell analyses. Since analysing each
of these datasets manually would require a prohibitive amount of hands-on time, the bioinformat-
ics team depends heavily on automated workflows to perform often-recurring types of analyses
in routine settings.

One such type of analysis that needs to be performed on virtually every dataset of sequencing
raw data is quality control (QC) [EGFF16]. The task of such a pipeline is to run several tools,
as outlined below, to assess, improve and report on the quality of the raw data. The assess-
ment and automated removal of known types of artifacts ensures that follow-up analyses work
with high-quality data and can create reliable results. Also, in case of unexpected results in the
follow-up analyses, the quality report generated by the pipeline can be used to quickly identify
potential quality-related causes for those unexpected results. The quality report is also used by
the sequencing core facility in order to monitor the overall sequencing quality level and as an
additional factor in monitoring the health of the sequencing machines. This means that a QC
pipeline used at the service unit has to meet especially high standards in regard to robustness and
maintainability. Thus, a QC pipeline was chosen as the use case for the collaboration described
here.

The requirements for the pipeline were defined based on the equipment and IT infrastructure
available within the institute and previous experience. In brief, they are as follows:

• Analyze data from Illumina sequencers

3 / 9



Collaborative software development to disentangle counterproductive incentives

• Extract run metadata from paths and filenames based on flexible naming patterns

• Perform read trimming (see e.g. [CKHW14] and [Che23])

• Perform (mapping-based and/or kmer-based) taxonomic assignment of reads to facilitate
identification of contamination or sample swaps (see e.g. [MWX+24])

• Generate customizeable end-user and internal reports

• Provide both sensible defaults and extensive parametrization

• Run both on HPC environments and locally

While these requirements are specifically geared toward the situation at the RKI, they are also
somewhat typical for core facilities offering NGS data analysis in general.

3 Technical solution

In the description of the technologies and processes, we focus on those aspects that we believe
to be transferable to other similar projects since this is a case study rather than a software note.
An extensive description of the pipeline itself, QCUrchin, is present in the repository under
https://dev.azure.com/RKI-HTW/NGS-QC/ git/QCurchin.

In order to make complex workflows consisting of many tools manageable, the best practice
is to use a workflow management system [WWG21]. Many such systems are available, and the
comparison of their features is beyond the scope of this work. For this specific case, we have
decided to use Nextflow [DCF+17]. To ensure reproducibility and portability across different
compute environments, we use apptainer [KCB+21]: Every Nextflow process defines an app-
tainer image that the process is executed in. This also makes deployment easier, as the only
requirements are Nextflow and Apptainer/Singularity.

Initially, we had created a single apptainer image containing all required tools: FastP [Che23],
bowtie2 [LS12], Kraken2 [WLL19], Bracken [LBTS17], rmarkdown [rma24] for reporting, and
Python environments for scripts used for intermediate steps. However, while very convenient for
development and testing, this caused two challenges: (i) Changing the version of a single tool
could have effects on the functioning of other tools (e.g. if the version of a library that several
tools depend on changed), and (ii) it negatively impacted the performance when running on an
HPC cluster according to the cluster admin, since the entire container had to be copied to each
node even if the job on that node only required one of the packaged tools. This performance
issue might just be an artifact of the RKI cluster, since the use of single- vs. multi-container
deployment should not significantly affect performance [LG20]. Also, nf-core [EPF+19], which
is a large community-based effort that provides reference nextflow pipeline implementations,
follows this approach of a separate container for each process. Accordingly, the final version
of the pipeline uses a separate apptainer image for each process that contains only the tools
specifically required by that process.

To make reproducing results as simple as possible, QCUrchin can be started both using a con-
figuration file (with a default configuration file present in the environment) and command line

4 / 9

https://dev.azure.com/RKI-HTW/NGS-QC/_git/QCurchin


ECEASST

parameters that override settings from the configuration file. It then generates a new configura-
tion file containing all options used during the run along with the analysis results, which allows
re-running the same analysis using that configuration file.

4 Organisation and challenges

While the technical approach described above more or less constitutes bread-and-butter pipeline
development, the organization of such a project posed several challenges that we believe others
may be able to learn from.

First and foremost, requirements change over time in research software development just as
they do in every other software project. Thus, an agile approach with regular meetings between
the project partners is essential for success (we used a scrum-like approach adapted to the team
size). However, this process needs to be mindful of both the very limited time of the scientists -
which is one of the main motivations behind this whole approach - and the relatively low level
of experience with the requirements of scientists that most typical software developers have. It
is also vital to allocate sufficient time to allow both parties to understand each other’s language.
Often, the same words are used in different communities to describe different things. It is useful
to allow each side to rephrase and repeat their understanding of problems, solutions and progress
in their own words to reduce misunderstandings caused by those different languages.

In our experience, it is thus important to first identify a minimum viable product that will
cover the most frequent use cases of the scientists and can be rapidly deployed as a first-release
candidate. This allows the scientists to quickly see a benefit, as they have something that, while
not perfect, makes their work a bit easier. It also motivates them to actually use early release
candidates - as opposed to forcing them to use valuable time that they would rather apply to-
wards their research for testing the software - and to provide feedback on misunderstandings and
necessary improvements at an early stage in development. It is hard to overstate the importance
of such a feedback loop that should feel productive and not like a burden for both sides.

A second major challenge in this model of collaboration is posed by the availability of re-
sources. In most cases, the financial resources will not be present to outright employ software
engineers who will do all the work. However, students from study programmes that involve
computer science education can help in solving this problem by contributing source code in the
course of internships or student projects. This is a mutually beneficial arrangement, as it not only
helps the group hosting the students develop or maintain analysis software. It is also both finan-
cially attractive and useful for the involved students, as they gain insights into the inner workings
of a real project and the satisfaction of generating code that will actually run in production. The
challenges this poses lie in the short duration of the individual student projects, the associated
high personnel turnover, and the varying quality of code produced by different students. Espe-
cially when involving students in the form of projects that run in parallel to the semester, we have
observed that, as described by Katz et al. [KMRH19], students need to be consistently available
to work on a project for at least about one whole day per week in order to generate a meaningful
net contribution to the project.

The use of a workflow management system such as Nextflow makes coping with those chal-
lenges somewhat easier. It allows the creation of subtasks, such as the development and bench-

5 / 9



Collaborative software development to disentangle counterproductive incentives

marking of a single process, the restructuring of a sub-workflow, or the creation of a new report
template that can realistically be completed within a student project. Those features can also be
developed within separate branches and only merged into the production branch if they are of
sufficiently high quality.

However, the high turnover still makes knowledge transfer problematic. As such, a special fo-
cus needs to be put on high-quality, consistent documentation—especially concerning the overall
structure of the project and the steps necessary to start development—as well as consistent code
style and structure. Additionally, a robust test suite, including both unit tests for the individ-
ual processes and integration tests for the entire pipeline, is necessary to avoid regressions. In
QCUrchin, we employ pytest [KOP+04] for unit tests and pytest-workflow [pyt] for end-to-end
tests. A reduced test suite is used for gated commits to ensure that the main branch always con-
tains functioning code, and the full test suite is run as part of the automated builds. To ensure
that the artefacts behave consistently with the test suite, the singularity container that QCUrchin
is packaged into is the same container as the one that the tests run in - with the only exception
that the large test datasets used in the full internal test suite are removed from the image prior to
the generation of the final artifact in order to reduce the image size.

While these measures help in dealing with the complexity introduced by the high number of
students involved in the project over its duration, they are, in our experience, not sufficient in
and of themselves. Rather, a person who maintains an overall overview of the project, performs
on- and off-boarding and is responsible for organizing communication with the project partner
is necessary at each of the project partners. This does not need to be a full-time position and,
depending on the funds available, can be an additional role given to existing team members. It is,
however, a position that needs to be clearly defined and present as a constant in such a dynamic
environment.

5 Conclusion

Several years ago, we started the described collaboration motivated by the idea that research soft-
ware engineering might profit from being performed as a joint venture of research and software
engineering. While not without challenges, this has proven to be a beneficial experiment for us,
leading to the creation of a new robust quality control pipeline that is being productively used on
hundreds of NGS runs every year.

None of the things we have learned during that journey and described here are entirely novel
in and of themselves - or indeed very surprising in hindsight. We do believe, however, that the
description of our experiences in this process, its benefits, and the lessons we learned from it can
serve as a motivation and blueprint to flatten the learning curve for others who want to try this
approach. In our experience, doing so leads to more sustainable research software, and, as a side
effect, to more computer science students entering the market ready to become full-time research
software engineers.

6 / 9



ECEASST

Bibliography

[ABD+21] H. Anzt, F. Bach, S. Druskat, F. Löffler, A. Loewe, B. Y. Renard, G. Seemann,
A. Struck, E. Achhammer, P. Aggarwal, F. Appel, M. Bader, L. Brusch, C. Busse,
G. Chourdakis, P. W. Dabrowski, P. Ebert, B. Flemisch, S. Friedl, B. Fritzsch,
M. D. Funk, V. Gast, F. Goth, J.-N. Grad, J. Hegewald, S. Hermann, F. Hohmann,
S. Janosch, D. Kutra, J. Linxweiler, T. Muth, W. Peters-Kottig, F. Rack, F. H. Raters,
S. Rave, G. Reina, M. Reißig, T. Ropinski, J. Schaarschmidt, H. Seibold, J. P. Thiele,
B. Uekermann, S. Unger, R. Weeber. An environment for sustainable research soft-
ware in Germany and beyond: current state, open challenges, and call for action.
F1000Research 9:295, Jan. 2021.
doi:10.12688/f1000research.23224.2
http://dx.doi.org/10.12688/f1000research.23224.2

[Che23] S. Chen. Ultrafast one-pass FASTQ data preprocessing, quality control, and dedu-
plication using fastp. iMeta 2(2), May 2023.
doi:10.1002/imt2.107
http://dx.doi.org/10.1002/imt2.107

[CKHW14] C. Chen, S. S. Khaleel, H. Huang, C. H. Wu. Software for pre-processing Illumina
next-generation sequencing short read sequences. Source Code Biol. Med. 9(1):8,
May 2014.

[CW20] J. Cohen, M. Woodbridge. RSEs in Research? RSEs in IT?: Finding a suitable home
for RSEs. 2020.
doi:10.48550/ARXIV.2010.10477
https://arxiv.org/abs/2010.10477

[DCF+17] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, C. Notredame.
Nextflow enables reproducible computational workflows. Nature Biotechnology
35(4):316–319, Apr. 2017.
doi:10.1038/nbt.3820
http://dx.doi.org/10.1038/nbt.3820

[EGFF16] C. Endrullat, J. Glökler, P. Franke, M. Frohme. Standardization and quality manage-
ment in next-generation sequencing. Applied amp; Translational Genomics 10:2–9,
Sept. 2016.
doi:10.1016/j.atg.2016.06.001
http://dx.doi.org/10.1016/j.atg.2016.06.001

[EPF+19] P. A. Ewels, A. Peltzer, S. Fillinger, J. Alneberg, H. Patel, A. Wilm, M. U. Garcia,
P. Di Tommaso, S. Nahnsen. nf-core: Community curated bioinformatics pipelines.
Apr. 2019.
doi:10.1101/610741
http://dx.doi.org/10.1101/610741

7 / 9

http://dx.doi.org/10.12688/f1000research.23224.2
http://dx.doi.org/10.12688/f1000research.23224.2
http://dx.doi.org/10.1002/imt2.107
http://dx.doi.org/10.1002/imt2.107
http://dx.doi.org/10.48550/ARXIV.2010.10477
https://arxiv.org/abs/2010.10477
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1016/j.atg.2016.06.001
http://dx.doi.org/10.1016/j.atg.2016.06.001
http://dx.doi.org/10.1101/610741
http://dx.doi.org/10.1101/610741


Collaborative software development to disentangle counterproductive incentives

[FWH+24] F. Freyer, P. Wolk, B. Haldemann, M. Bittiehn, M. Lataretu, S. Fuchs, P. W.
Dabrowski. QCUrchin. Nov. 2024.
doi:10.5281/zenodo.14092346
https://doi.org/10.5281/zenodo.14092346

[KCB+21] G. M. Kurtzer, Cclerget, M. Bauer, I. Kaneshiro, D. Trudgian, D. Godlove.
hpcng/singularity: Singularity 3.7.3. 2021.
doi:10.5281/ZENODO.1310023
https://zenodo.org/record/1310023

[KM21] D. Katz, K. Mchenry. Research Software Sustainability: Lessons Learned at NCSA.
In Proceedings of the 54th Hawaii International Conference on System Sciences.
HICSS. Hawaii International Conference on System Sciences, 2021.
doi:10.24251/hicss.2021.873
http://dx.doi.org/10.24251/HICSS.2021.873

[KMRH19] D. S. Katz, K. McHenry, C. Reinking, R. Haines. Research Software Development
amp; Management in Universities: Case Studies from Manchester’s RSDS Group,
Illinois’ NCSA, and Notre Dame’s CRC. In 2019 IEEE/ACM 14th International
Workshop on Software Engineering for Science (SE4Science). IEEE, May 2019.
doi:10.1109/se4science.2019.00009
http://dx.doi.org/10.1109/SE4Science.2019.00009

[KOP+04] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, F. Bruhin.
pytest. 2004.
https://github.com/pytest-dev/pytest

[LBTS17] J. Lu, F. P. Breitwieser, P. Thielen, S. L. Salzberg. Bracken: estimating species abun-
dance in metagenomics data. PeerJ Computer Science 3:e104, Jan. 2017.
doi:10.7717/peerj-cs.104
http://dx.doi.org/10.7717/peerj-cs.104

[LG20] P. Liu, J. Guitart. Performance comparison of multi-container deployment schemes
for HPC workloads: an empirical study. The Journal of Supercomputing
77(6):6273–6312, Nov. 2020.
doi:10.1007/s11227-020-03518-1
http://dx.doi.org/10.1007/s11227-020-03518-1

[LS12] B. Langmead, S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9(4):357–359, Mar. 2012.
doi:10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923

[MWX+24] V. Mallawaarachchi, A. Wickramarachchi, H. Xue, B. Papudeshi, S. R. Grigson,
G. Bouras, R. E. Prahl, A. Kaphle, A. Verich, B. Talamantes-Becerra, E. A. Dinsdale,
R. A. Edwards. Solving genomic puzzles: computational methods for metagenomic
binning. Brief. Bioinform. 25(5), July 2024.

8 / 9

http://dx.doi.org/10.5281/zenodo.14092346
https://doi.org/10.5281/zenodo.14092346
http://dx.doi.org/10.5281/ZENODO.1310023
https://zenodo.org/record/1310023
http://dx.doi.org/10.24251/hicss.2021.873
http://dx.doi.org/10.24251/HICSS.2021.873
http://dx.doi.org/10.1109/se4science.2019.00009
http://dx.doi.org/10.1109/SE4Science.2019.00009
https://github.com/pytest-dev/pytest
http://dx.doi.org/10.7717/peerj-cs.104
http://dx.doi.org/10.7717/peerj-cs.104
http://dx.doi.org/10.1007/s11227-020-03518-1
http://dx.doi.org/10.1007/s11227-020-03518-1
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923


ECEASST

[pyt] pytest-workflow.
https://github.com/LUMC/pytest-workflow

[qcu] QCUrchin git repository.
https://dev.azure.com/RKI-HTW/NGS-QC/ git/QCurchin

[rma24] rmarkdown: Dynamic Documents for R. 2024. R package version 2.26.2.
https://github.com/rstudio/rmarkdown

[SKM+18] S. L. R. Stevens, M. Kuzak, C. Martinez, A. Moser, P. Bleeker, M. Galland. Building
a local community of practice in scientific programming for life scientists. PLOS
Biology 16(11):e2005561, Nov. 2018.
doi:10.1371/journal.pbio.2005561
http://dx.doi.org/10.1371/journal.pbio.2005561

[WLL19] D. E. Wood, J. Lu, B. Langmead. Improved metagenomic analysis with Kraken 2.
Genome Biology 20(1), Nov. 2019.
doi:10.1186/s13059-019-1891-0
http://dx.doi.org/10.1186/s13059-019-1891-0

[WWG21] L. Wratten, A. Wilm, J. Göke. Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nature Methods
18(10):1161–1168, Sept. 2021.
doi:10.1038/s41592-021-01254-9
http://dx.doi.org/10.1038/s41592-021-01254-9

9 / 9

https://github.com/LUMC/pytest-workflow
https://dev.azure.com/RKI-HTW/NGS-QC/_git/QCurchin
https://github.com/rstudio/rmarkdown
http://dx.doi.org/10.1371/journal.pbio.2005561
http://dx.doi.org/10.1371/journal.pbio.2005561
http://dx.doi.org/10.1186/s13059-019-1891-0
http://dx.doi.org/10.1186/s13059-019-1891-0
http://dx.doi.org/10.1038/s41592-021-01254-9
http://dx.doi.org/10.1038/s41592-021-01254-9

	Introduction
	Case description
	Technical solution
	Organisation and challenges
	Conclusion

