
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

Compared Experiences from Teaching
Full-Semester Research Software

Engineering Courses at Four German
Universities

Nikolas Bertrand, Akshay Devkate, Guido Juckeland, Jan Linxweiler, Sören Peters,
Steffen Remus, Katrin Schöning-Stierand, Anna-Lena Lamprecht

DOI: 10.14279/eceasst.v83.2611

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

https://doi.org/10.14279/eceasst.v83.2611
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/


ECEASST

Compared Experiences from Teaching Full-Semester Research
Software Engineering Courses at Four German Universities

Nikolas Bertrand1, Akshay Devkate2, Guido Juckeland3, Jan Linxweiler4,
Sören Peters5, Steffen Remus6, Katrin Schöning-Stierand7,

and Anna-Lena Lamprecht8

1 University of Potsdam, nbertrand@uni-potsdam.de,
2 University of Potsdam, akshay.devkate@uni-potsdam.de

3 Helmholtz-Zentrum Dresden - Rossendorf / TU Dresden, g.juckeland@hzdr.de
4 TU Braunschweig, j.linxweiler@tu-braunschweig.de
5 TU Braunschweig, soe.peters@tu-braunschweig.de

6 Universität Hamburg, steffen.remus@uni-hamburg.de
7 Universität Hamburg, katrin.schoening-stierand@uni-hamburg.de

8 University of Potsdam, anna-lena.lamprecht@uni-potsdam.de

Abstract: Research Software Engineering has emerged as a critical discipline at
the intersection of software development and research with the aim of enhancing
the quality, reliability, and reproducibility of scientific software. In this paper we
present a comparative analysis of the experiences gained from teaching full-semester
Research Software Engineering (RSE) courses at four different universities in Ger-
many. Despite its growing importance, there is limited literature on the pedagogical
approaches and challenges encountered in teaching RSE courses, particularly at the
university level. This paper investigates and contrasts the contexts, designs, and
experiences of RSE courses offered at the TU Braunschweig, TU Dresden, Uni-
versity of Hamburg and University of Potsdam. By synthesizing the experiences
and insights gleaned from these four universities, this study aims to provide valu-
able guidance and best practices for educators seeking to develop or enhance RSE
education initiatives.

Keywords: Research Software Engineering, Scientific Software Engineering, RSE
Education, RSE Teaching

1 Introduction

Research Software Engineering (RSE) skills have become increasingly important across all sci-
entific disciplines, as modern research heavily relies on software tools and computational meth-
ods. This necessitates the development of suitable educational and training forms to equip re-
searchers with these essential skills. Currently, there is a vibrant and ongoing discussion within
the RSE communities about the best approaches to teaching and training in this field.

For example, Barker et al. [BBB+24] highlight this need in their report on ”Software and
skills for research computing in the UK”, underscoring the importance of well-defined training
pathways. In Germany, this discourse has been furthered by the ”Teaching RSE” working group,

1 / 11

mailto:nbertrand@uni-potsdam.de
mailto:akshay.devkate@uni-potsdam.de
mailto:g.juckeland@hzdr.de
mailto:j.linxweiler@tu-braunschweig.de
mailto:soe.peters@tu-braunschweig.de
mailto:steffen.remus@uni-hamburg.de
mailto:katrin.schoening-stierand@uni-hamburg.de
mailto:anna-lena.lamprecht@uni-potsdam.de


Full-Semester RSE Courses

which formed at the 2023 German RSE conference (deRSE23) in Paderborn. This group has
recently released a paper titled ”Foundational Competencies and Responsibilities of a Research
Software Engineer” [GAB+24] as the basis for further discussion and developments. Among
other recommendations, the paper advocates for the creation of a dedicated RSE Master’s pro-
gram, a proposal that has garnered significant interest and led to the formation of a separate
working group. Additionally, resources such as the website https://de-rse.org/learn-and-teach/
created by the group serve as portals and link collections, providing valuable materials re-
lated to RSE teaching. Among many other things, they point to the Software Carpentry (https:
//software-carpentry.org/) [Wil16], a community of volunteer instructors who teach short work-
shops and develop lessons about various RSE skills. They have proven very effective in filling
skill gaps on an as-needed basis and are particularly popular among researchers (PhD students,
postdocs) who look to enhance specific technical skills.

This paper focuses on teaching full-semester RSE courses at universities that provide oppor-
tunities for students to develop substantial RSE skills already during their studies. Naturally,
the design of these courses must be tailored to their specific organizational contexts, consider-
ing various factors such as institutional resources, student backgrounds, and educational goals.
We explore four different RSE courses taught at four German universities: TU Braunschweig
(TUB), TU Dresden (TUD), University of Hamburg (UHH), and University of Potsdam (UP).
The compared experiences reported here are based on a series of discussion sessions among the
authors, which started at the deRSE24 Conference in Würzburg in March 2024 as a result of
related contributions, were continued at the Dagstuhl seminar ”Research Software Engineering:
Bridging Knowledge Gaps” [DGJK24] in April 2024, and eventually resulted in the collabora-
tive work on this report. By sharing our experiences, we aim to provide inspiration and guidance
for others looking to implement similar programs, and to contribute to the broader conversation
on effective RSE education, helping to shape the future of training in this field.

The paper is structured as follows: Section 2 provides an overview of the contexts and origins
of the four RSE courses. Section 3 compares the course designs, focusing on content, formats,
learning outcomes, and assessment methods. Section 4 discusses experiences with the different
courses, incorporating student feedback and observations, and adjustments made in response.
Section 5 concludes the paper, summarizing key insights and discussing future directions for
RSE education at universities.

2 Course Contexts

The courses at TU Braunschweig, TU Dresden, University of Hamburg, and the University of
Potsdam exhibit distinct characteristics shaped by their institutional contexts. For orientation,
we start with an overview of the contexts and origins of the four RSE courses discussed in this
paper, with Table 1 summarizing key points.

At TU Braunschweig the RSE course goes by the name ”Scientific Software Engineering”
(SSE). It was first started in the Summer of 2022 and is a core component of the international,
interdisciplinary, and research-oriented Master’s degree program ”Computational Sciences in
Engineering (CSE).” Successful attendance in the course is compulsory for these students. How-
ever, the course is also open as an elective to students from other disciplines who want to spe-

2 / 11

https://de-rse.org/learn-and-teach/
https://software-carpentry.org/
https://software-carpentry.org/


ECEASST

Organization TU Braunschweig TU Dresden U Hamburg U Potsdam
Teaching
team, part-
ners

Institute of Compu-
tational Modeling in
Civil Engineering

Institute of Software-
and Multimedia-
Technology with a
teaching assignment to
Computational Science
Department of HZDR

Staff members of the
House of Computing
and Data Science & the
Language Technology
group

Chair of Software En-
gineering

Course title Scientific Software En-
gineering

Introduction to Re-
search Software
Engineering

Research Software En-
gineering

Research Software En-
gineering

Contact
hours/week

4 (2 lecture, 2 lab) 2 (1 lecture, 1 lab) 4 (2 lecture, 2 lab) 4 (2 lecture, 2 lab)

Credit
points

5 ECTS 3 ECTS 6 ECTS 6 ECTS

Compulsory
or elective

compulsory elective elective elective

Related
courses in
curriculum

Algorithms and Data
Structures; Parallel and
Distributed Computing

Software Engineering No related courses Software Engineering,
Research Data Man-
agement

Target
audience
(study
programs)

Master students from
Computational Sci-
ences in Engineering
(CSE) and (starting in
2026) Artificial Intel-
ligence for Molecular
Sciences (AIMS)

Open to all students
with computer science
affiliation (currently
mostly Master students
Computational Mod-
eling and Simulation
(CMS) and Computer
Science Bachelor and
Master students)

Open to all (Bachelor
& Master)

Open to all (currently
mostly Bachelor stu-
dents from Cognitive
Sciences, Computer
Linguistics and Infor-
matics, Master students
from Computational
Science, Data Science,
and some other science
programs)

Prerequisites Programming skills
(Python)

Programming skills
(any language)

Programming skills
(Python)

Programming skills
(preferably Python)

Table 1: Course Contexts

3 / 11



Full-Semester RSE Courses

cialize in scientific software development. The course was established in accordance with the
digitization strategy of TU Braunschweig to reflect the growing importance of software in the
engineering industry and academia. Hence, the course is meant to enable students to work at the
intersection of traditional and software engineering disciplines. The course also served as a basis
for workshops in SURESOFT [BDF+22], a project to support the sustainability of research soft-
ware and will also be part of the Master’s degree program ”Artificial Intelligence for Molecular
Sciences (AIMS)” beginning in 2025.

As Helmholtz-Zentrum Dresden - Rossendorf (HZDR) closely collaborates with TU Dresden,
quite a number of students with a CS background also work in RSE roles at HZDR. The ”In-
troduction to RSE” course at TU Dresden was started as a reaction to working with CS students
either during their thesis or as student assistants and discovering that they need to be taught RSE
fundamentals over and over again. The course aims at translating the experiences and funda-
mental skills of the RSE community both at HZDR and at TU Dresden to the students, also so
that they can already be more productive during their academic studies. The large majority of
students attending this course come from the Master program ”Computational Modelling and
Simulation”. Students describe their motivation mainly as upskilling their software development
skills as quite a number of them have a non-CS background and previously were more of the
category ”scientists who code” than actual software developers.

At University of Hamburg, the ”Research Software Engineering” course was offered as a
collaborative course by the House of Computing and Data Science (HCDS, lectures) and the
Language Technology Group (LT, practice class) for the first time in the summer term of 2024.
As a central institution, the HCDS supports interdisciplinary research and the introduction of
innovative digital methods. At the same time, it coordinates and supports the implementation
of the digitization strategy in research at UHH. The RSE course is offered to both Bachelor’s
and Master’s students. It is suitable for participants from all disciplines with basic knowledge of
Python or a similar programming language. Its design largely follows the example of the RSE
course at the University of Potsdam (see below). Participants come from diverse fields of study,
such as Political Science, Economics, Physics, or Psychology. In addition to this course, there
is be an interdisciplinary Python course in the winter semester to prepare as many students as
possible to participate in the RSE course.

The ”Research Software Engineering” course at University of Potsdam was introduced by
the Software Engineering group in the summer term of 2023 mainly to cater for the need of
research-specific software engineering courses in the Master programs Computational Science
and Data Science. With only average Python programming skills as a prerequisite and no par-
ticular disciplinary focus, it is however suitable for interested students from all programs, and
is principally open to all. Indeed, the backgrounds of participants turned out to be very diverse,
with e.g. Bachelor students from informatics, business infomratics, cognitive sciences and com-
puter linguistics, and Master students from astrophysics, computational science, climate science,
data science, ecology, economics, and more. (Experiences with this heterogeneous audience are
discussed in Section 4.) The course also complements the interdisciplinary ”Research Data Man-
agement” course that had been introduced by the computer science institute some years earlier
in response to the increasing need for data management skills across all disciplines.

4 / 11



ECEASST

3 Course Designs

Driven by their different institutional contexts, the course designs at TU Braunschweig, TU
Dresden, University of Hamburg, and University of Potsdam differ significantly in their focus,
content, and assessment methods. In this section we take a closer look at the designs of the four
different courses, with Table 2 summarizing essential points.

The goal of the ”Scientific Software Engineering” course at TU Braunschweig is to provide
students with a solid understanding of software engineering concepts, enabling them to design
and build software that is easy to maintain and evolves over time while addressing the ever-
growing complexity of research software. As such, the course emphasizes well-established
practices and covers the basics of object-oriented design, Software Design Principles, Software
Design Patterns, and Test-Driven development. The weekly lectures mix theoretical and practi-
cal elements, with a focus on close interaction with the audience to find and develop solutions
together. Additionally, at the end of the semester, all participants consolidate what they have
learned in group work on a larger practical example project. The group work results are then
presented as a prerequisite for the final exam.

At TU Dresden, the course is offered as an elective and open to anyone who can receive credits
from the computer science faculty (which is in total seven degree programs) and greatly benefits
from the multitude of backgrounds of the students. The course is mainly programming language-
agnostic and focuses on the software development processes in highly interdisciplinary team
that requires computer scientists to negotiate good enough practices with scientists who code.
It tries to follow a typical RSE consulting project life cycle from the RSE team at HZDR, from
the initial building of a common vocabulary among interdisciplinary teams and also covering
requirement analysis, working with software project platforms, testing/CI/CD, build systems,
licensing and software publication. It uses both the training material of the Helmholtz RSE
platform HIFIS (https://hifis.net/services/software/training.html) and the MIT ”missing semester
in CS education” (https://missing.csail.mit.edu/) as its content basis.

At University of Hamburg, the RSE course comprises a lecture and a hands-on part. Following
the 2023 course design of the University of Potsdam, students are engaged to perform reusable
data analysis as part of an individual research software project based on self-selected data in the
first half of the course. In the second half of the course, students are engaged to perform a similar
study in a group project, hence promoting teamwork and encouraging them to fulfill different
user roles. In addition to existing fundamental programming skills, the necessary knowledge
was imparted in the lecture. This included the use of Git, project structuring, Python code style,
software licensing, and the use of Jupyter Notebooks. The content is mainly based on parts of
the textbook ”Research Software Engineering with Python” [IHJ+21]. Depending on the subject,
the teaching is performed through slides, live coding, or a mix of both.

The ”Research Software Engineering” course at University of Potsdam aims to enable stu-
dents to conduct small and medium-sized research software projects professionally, assuming
average Python programming skills but no software project experience at the start. The content
of the course is largely based on chapters from the textbook ”Research Software Engineering
with Python” [IHJ+21] that originated from the Software Carpentry community, but comple-
ments it with additional content around FAIR software [HKB+22], the software life cycle (re-
quirements, architectures, design) and workflow management with, e.g., Snakemake [MJL+21].

5 / 11

https://hifis.net/services/software/training.html
https://missing.csail.mit.edu/


Full-Semester RSE Courses

Organization TU Braunschweig TU Dresden U Hamburg U Potsdam
Main learn-
ing objec-
tive

Work at the boundary
of classical engineering
teams and software de-
velopment teams

How to work in inter-
disciplinary teams on
research software

Mainly data analyis
with self-motivated ob-
jectives and hypotheses
in two projects (indi-
vidual & team)

Conduct small and
medium-sized research
software projects pro-
fessionally.

Content/
topics

Dealing with the
growing complexity
of research software,
Developing soft-
ware which is easy
to change, Object-
Oriented Design,
Design Principles,
Design Patterns, Test-
Driven Development

Working in teams,
CI/CD, build systems,
licensing, software
publication

Project organization, coding style, version con-
trol, licensing, software citation, FAIR, team-
work, software life cycle (requirements, archi-
tectures, design, implementation, testing, de-
ployment), error handling, packaging, configu-
ration, workflow management.

Basis/ text-
book

Based on ”Agile Soft-
ware Development,
Principles, Patterns,
and Practices” [Mar13]

HIFIS Trainings
(https://hifis.net/
services/software/
training.html), MIT
Missing Semester of
CS Education (https://
missing.csail.mit.edu/)

”Research Software Engineering with Python”
[IHJ+21], supplemented with own material on
FAIR software, the software life cycle, and
workflow management.

Course for-
mat

Mix of theoretical and
practical parts inte-
grated into the weekly
lectures

Following a RSE
project life cycle from
requirements gathering
to software publication

Lecture with slides,
jupyter notebooks, live
coding, shared experi-
ences, guest talks, with
optional exercises to
deepen the knowledge
and the closely super-
vised project work,
which will be used for
grading

Centered around two
course projects. Lec-
tures and labs gradu-
ally introduce the re-
quired knowledge and
skills.

Tools used GitLab, VSCode,
VSCode-Live-Share,
Python, MyPy

GitLab, HedgeDoc,
Zenodo

GitHub/GitLab,
Jupyter Notebook,
JupyterHub, IDE and
programming language
of choice (mainly
Python, some R),
and VSCode as IDE,
Docker

GitLab, Python,
Jupyter Notebook and
IDE, text editor of
choice and snakemake

Assessment Group work on a larger
practical example with
presentation as a pre-
requisite for admission
to the exam, and writ-
ten exam

Exam (written or oral) Individual project
as a prerequisite for
examination (rated
on a binary scale),
50% group project
+ presentation, 50%
examination (oral)

20% individual project
(computational nar-
rative), 40% group
project (workflow ap-
plication), 40% exam.

Table 2: Course Designs

6 / 11

https://hifis.net/services/software/training.html
https://hifis.net/services/software/training.html
https://hifis.net/services/software/training.html
https://missing.csail.mit.edu/
https://missing.csail.mit.edu/


ECEASST

Organization TU Braunschweig TU Dresden U Hamburg U Potsdam

Number of
participants

2023: ca. 50
2024: ca. 30

2023: ca. 20
2024: ca. 65

2023: -
2024: ca. 20

2023: ca. 60
2024: ca. 90

Student
feedback

Students enjoy the mix
of theory and practice
during lectures.

Positive, especially
from CMS students
that sometimes have a
non-CS background

Positive. Students
state that the course
increased their interest
in the studies and
motivated them to en-
gage with the content
beyond the course.

Very positive. Students
(also those from CS!)
emphasize the great
practical relevance and
usefulness of the new
skills acquired.

Major
changes
between
years

No major changes, but
the practical examples
will be continuously
improved based on
feedback from partici-
pants

None yet n/a 2024: Stronger focus
on workflow manage-
ment, in lecture and
group project.

Best expe-
rience

Starting in 2026 the
course will be part of
the program ”Artificial
Intelligence for Molec-
ular Sciences (AIMS)”

Already asked for ex-
porting this course to
another faculty

The diverse back-
grounds of participants
lead to a great variety
in project topics; their
own research ideas
keep them motivated

Really cool interdis-
ciplinary projects by
mixed groups of stu-
dents.

Greatest
pain point

Balance between prac-
tical application and a
methodical approach in
the examples

Too little time allo-
cated so far to make the
lessons stick. Inflexi-
ble exam regulations to
credit practical work of
the students.

None yet Inflexible study and ex-
amination regulations,
making it difficult to
recognize credits in
other study programs,
thus discouraging in-
terested students from
participating.

Table 3: Experiences

Students carry out two accompanying projects during the course that form the major part of
the assessment: Students start with creating their own project on an individual basis, where
they develop a Jupyter notebook-based computational narrative around a self-selected dataset
from the German federal statistical office (Destatis). After that, the students continue with a
group project. Here they have to develop a workflow application using Snakemake for a self-
selected data analysis problem (typically proposed by a non-CS student in the group). In both
projects, they are instructed to follow the RSE practices discussed in the lectures and labs. To
encourage further reuse of the course material, both the lecture content in form of an online
textbook (https://software-engineering-group-up.github.io/RSE-UP) and the course assignments
(https://gitup.uni-potsdam.de/seg/rse course/rse course materials) are shared under a Creative
Commons Attributions (CC-BY) license, with associated code being shared under a MIT license.

7 / 11

https://software-engineering-group-up.github.io/RSE-UP
https://gitup.uni-potsdam.de/seg/rse_course/rse_course_materials


Full-Semester RSE Courses

4 Experiences

The RSE courses at TU Braunschweig, TU Dresden, University of Hamburg, and University of
Potsdam offer varied experiences and insights, with each institution facing unique challenges
and successes. In this section we describe and compare our experiences with teaching the differ-
ent RSE courses, ranging from first-time experiences like in Hamburg to accounts from several
years of teaching and further developing the course like in Braunschweig. Table 3 provides an
overview of key experiences and insights.

The ”Scientific Software Engineering” course at TU Braunschweig has been well accepted,
and students provided positive and valuable feedback. The students appreciate the blend of
theoretical and practical content. In particular, the informal interactive part has been appreci-
ated, as it supports flexible discussion of topics and questions. Also, the opportunity to deepen
their understanding through homework assignments and hands-on projects has been very well
received. Additionally, students value the collaborative environment fostered by group work and
the chance to present their projects, consolidating their knowledge and enhancing their commu-
nication and teamwork skills. In addition, they value that what they learned from this course can
be applied to a wide range of other subjects and thesis projects.

The RSE course at TU Dresden saw a huge increase of students to 65 in the second year and
has also been approached about an export to other faculties. There has already been a request
to also offer this course to students of another faculty to support their domain-specific data and
information science-centered master program. However, in its current format the course offers
too little time for students to consolidate the learned concepts so that they can flexibly adapt them
in their future academic or non-academic career. It is therefore planned to extend the course with
a weekly project work block, as this is reported as highly beneficial from the other three partners
of this paper.

Although the first iteration of the RSE course at the University of Hamburg had only around
20 participants, it was still very diverse: the participants came from more than 10 different
Bachelor’s and Master’s programs. This led to a good starting situation in implementing the
group projects and the option to work in an interdisciplinary team. The small course size enables
good contact with the participants and direct feedback from them. Students were generally very
happy with the course. Comments in the evaluation indicated that the course was particularly
suitable for those with very little prior knowledge in the field. For the upcoming course, the focus
will be on promoting it in advance to reach more students. In this regard, a Python course in the
winter semester for students and researchers, organized by the HCDS, will also be beneficial.

In Potsdam, the RSE course started in 2023 with around 60 students in the first iteration
– already three times more than anticipated (luckily additional staff was available to support
an upscaling at short notice) – and saw an increase to around 90 participants in the second
round. Although being an elective, it is likely that the number will increase further in the coming
years, as more study programs discover the course and recognize the credits for their students.
As mentioned before, the participants in the course are very diverse, coming from more than
ten different Bachelor and Master programs. While the diverse backgrounds can obviously be
challenging, the course design is not just explicitly domain-agnostic, but rather takes advantage
of this situation and lets students from computer/computational science, data science and other
disciplines work together in one group, so that they benefit and learn from the respective specific

8 / 11



ECEASST

knowledge and skills of their teammates.
Our discussion of experiences also reflected that effective teaching requires not only a deep

understanding of the subject matter, but also a keen awareness of best practices in classroom
management and student engagement. Below we list the most important ”do’s and don’ts” from
our experience, providing guidance to some key aspects of successfully teaching RSE courses:

Do:

• ... Carpentry-style [Wil16] interactive coding sessions when suitable for the content.
Slides are often not the most suitable medium for explaining code and similar artifacts.
Live coding with interactive discussion makes it more accessible to students.

• ... let students work onpractical projects, ideally building on their own ideas. As RSE is
a practical topic, good RSE courses need to have a strong practical component. Problem-
based learning generally increases student motivation and dedication, and we experienced
that letting students (partially) define their own projects increases their engagement further.

• ... encourage team work (e.g. group projects, students reviewing other students merge
requests, collaborative coding). While teamwork in student groups always comes with
challenges, it is of utmost importance in RSE, and thus needs to be trained in an RSE
course.

• ... recap content of the last lecture to refresh memory. Briefly reminding students of last
time’s topics is generally a good idea at the start of a lecture. We felt that for RSE, which
is for many students quite orthogonal to their main study discipline, this is very important
to get (back) on track before discussing new topics.

• ... provide lab exercises of different difficulty to cater for all skill levels of the students.
The great diversity in the participants’ backgrounds also means that some need a lot of help
while others are quickly done and bored. We saw that it paid off to also pose some more
challenging extra assignments as well as extra refresher exercises regularly, or motivate
the stronger students to help their peers.

• ... use collaborative notes (also for immediate feedback after each lecture/lab). Collabo-
rative note-taking (e.g. by using an EtherPad) can help students to stay focused, enables
low-key interaction and can in our experience lead to more questions being asked and
discussions among students, already during the lecture.

Don’t:

• ... expect anything beyond programming skills as prior knowledge. Most students
signing up for the RSE courses will have just done a basic programming course, probably
in Python. Other skills, like version control or shell scripting, are sometimes there, but
should in our experience not be taken for granted.

• ... use examples with too complex domain problems. Instead, use problems that ev-
eryone is familiar with or can understand easily. Such examples can sometimes be hard

9 / 11



Full-Semester RSE Courses

to find, but in our experiences it is worth the time investigating, as the suitability of the
examples greatly influences student motivation and engagement.

• ... underestimate the interest in the course and prepare to scale up when more students
show up. Almost all of us experienced a larger interest in the course than anticipated. We
will have to see if the upward trend continues in the future, but we will certainly prepare
for scaling up if needed.

5 Conclusion

The comparative analysis of full-semester Research Software Engineering ourses at TU Braun-
schweig, TU Dresden, University of Hamburg, and University of Potsdam reveals valuable in-
sights into the diverse approaches and experiences of teaching RSE within the German higher
education context. Each course is tailored to the specific needs and backgrounds of their student
cohorts, reflecting the unique institutional contexts and goals. Despite the differences in course
designs and institutional contexts, common themes emerge. A balanced approach between the-
oretical foundations and practical applications is key. Student feedback across all institutions
underscores the value of practical, project-based learning and the benefits of interdisciplinary
collaboration. However, challenges such as inflexible examination regulations and the need for
continuous improvement in course content and delivery are also prevalent. Addressing these
challenges requires ongoing adaptation and feedback-driven modifications to ensure that the
courses remain relevant and effective.

The experiences shared in this paper contribute to the broader conversation on RSE educa-
tion, offering practical guidance for developing and implementing similar programs at other
institutions. Future directions for RSE education should further promote interdisciplinary col-
laboration, and expand the reach of these courses through effective promotion and by offering
preparatory courses, such as the Python course at UHH, to help attract a broader student base.

Bibliography

[BBB+24] M. Barker, E. Breitmoser, P. Broadbent, N. Chue Hong, S. Hettrick, I. Lampaki,
A. Quinn, R. Taylor. Software and skills for research computing in the UK. Technical
report, Zenodo, Jan. 2024.
doi:10.5281/zenodo.10473186
https://zenodo.org/records/10473186

[BDF+22] C. Blech, N. Dreyer, M. Friebel, C. Jacob, M. Shamil Jassim, L. Jehl, R. Kapitza,
M. Krafczyk, T. Kürner, S. C. Langer, J. Linxweiler, M. Mahhouk, S. Marcus,
I. Messadi, S. Peters, J.-M. Pilawa, H. K. Sreekumar, R. Strötgen, K. Stump, A. Vo-
gel, M. Wolter. SURESOFT: Towards Sustainable Research Software. 2022.
doi:10.24355/dbbs.084-202210121528-0
https://leopard.tu-braunschweig.de/receive/dbbs mods 00071451

10 / 11

http://dx.doi.org/10.5281/zenodo.10473186
https://zenodo.org/records/10473186
http://dx.doi.org/10.24355/dbbs.084-202210121528-0
https://leopard.tu-braunschweig.de/receive/dbbs_mods_00071451


ECEASST

[DGJK24] S. Druskat, L. Grunske, C. Jay, D. S. Katz. Research Software Engineering: Bridging
Knowledge Gaps (Dagstuhl Seminar 24161). Dagstuhl Reports 14(4):42–53, 2024.
doi:10.4230/DagRep.14.4.42
https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.4.42

[GAB+24] F. Goth, R. Alves, M. Braun, L. Castro, G. Chourdakis, S. Christ, J. Cohen,
S. Druskat, F. Erxleben, J. Grad, M. Hagdorn, T. Hodges, G. Juckeland, D. Kempf,
A. Lamprecht, J. Linxweiler, F. Lffler, M. Martone, M. Schwarzmeier, H. Seibold,
J. Thiele, H. von Waldow, S. Wittke. Foundational Competencies and Responsibili-
ties of a Research Software Engineer [version 1; peer review: 1 approved]. 2024.
doi:10.12688/f1000research.157778.1

[HKB+22] N. Hong, D. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. Psomopoulos,
J. Harrow, L. Castro, M. Gruenpeter, P. Martinez, T. Honeyman, A. Struck, A. Lee,
A. Loewe, B. Werkhoven, D. Garijo, E. Plomp, F. Genova, H. Shanahan, M. Hell-
ström, M. Sandström, M. Sinha, M. Kuzak, P. Herterich, S. Islam, S.-A. San-
sone, T. Pollard, U. Atmojo, A. Williams, A. Czerniak, A. Niehues, A. Fouilloux,
B. Desinghu, C. Goble, C. Richard, C. Gray, C. Erdmann, D. Nüst, D. Tartarini,
E. Ranguelova, H. Anzt, I. Todorov, J. McNally, J. Burnett, J. Garrido-Sánchez,
K. Belhajjame, L. Sesink, L. Hwang, M. Tovani-Palone, M. Wilkinson, M. Servillat,
M. Liffers, M. Fox, N. Miljković, N. Lynch, P. Lavanchy, S. Gesing, S. Stevens,
S. Cuesta, S. Peroni, S. Soiland-Reyes, T. Bakker, T. Rabemanantsoa, V. Sochat,
Y. Yehudi, FAIR4RS WG. FAIR Principles for Research Software (FAIR4RS Princi-
ples). Mar. 2022.
doi:10.15497/RDA00065

[IHJ+21] D. Irving, K. Hertweck, L. Johnston, J. Ostblom, C. Wickham, G. Wilson. Research
Software Engineering with Python: Building Software that Makes Research Possi-
ble. CRC Press/Taylor and Francis, 2021.
doi:10.1201/9781003143482

[Mar13] R. Martin. Agile Software Development, Principles, Patterns, and Practices . Pear-
son Deutschland, 2013.
https://elibrary.pearson.de/book/99.150005/9781292038360

[MJL+21] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch, V. Sochat,
J. Forster, S. Lee, S. O. Twardziok, A. Kanitz et al. Sustainable data analysis with
Snakemake. F1000Research 10, 2021.
doi:10.12688/f1000research.29032.2

[Wil16] G. Wilson. Software Carpentry: lessons learned. F1000Research 3:62, Jan. 2016.
doi:10.12688/f1000research.3-62.v2

11 / 11

http://dx.doi.org/10.4230/DagRep.14.4.42
https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.4.42
http://dx.doi.org/10.12688/f1000research.157778.1
http://dx.doi.org/10.15497/RDA00065
http://dx.doi.org/10.1201/9781003143482
https://elibrary.pearson.de/book/99.150005/9781292038360
http://dx.doi.org/10.12688/f1000research.29032.2
http://dx.doi.org/10.12688/f1000research.3-62.v2

	Introduction
	Course Contexts
	Course Designs
	Experiences
	Conclusion

