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Abstract: Machine learning practitioners use a variety of tools to track their exper-
iments. These tools have in common that they are only concerned with the machine
learning aspect of the experiment: They may track model parameters or perfor-
mance metrics of the model, but provenance of the training data or scientific out-
comes produced with the trained model are largely overlooked. This is a drawback
especially when it comes to experiments where machine learning meets scientific
experiments and traditional simulations. In this contribution we present an initial
evaluation on improving documentation of such machine learning experiments us-
ing our data management guidance system HELIPORT. We also explore existing
experiment tracking tools and metadata schemas for ML experiments in the process
and discuss their suitability for integration with HELIPORT.

Keywords: data management, research software engineering, machine learning,
metadata, ontologies

1 Introduction

HELIPORT [KVU"20, VUS 23] is a data management guidance system that aims at making the
components and steps of the entire research experiment’s life cycle findable, accessible, interop-
erable and reusable according to the FAIR principles. It integrates documentation, computational
workflows, data sets, the final publication of the research results, and many more resources. This
is achieved by gathering metadata from established tools and platforms and passing along rele-
vant information to the next step in the experiment’s life cycle. HELIPORT’s high-level overview
of the project allows researchers to keep all aspects of their experiment in mind.

A particularly interesting future use case for HELIPORT could be the documentation of re-
search which, in addition to physical experiments, involves machine learning (ML). At Helmholtz-
Zentrum Dresden - Rossendorf (HZDR), the local Helmholtz AT unit—consisting of a team of
consultants and a young investigator group—is involved in many of these experiments.

ML experiments in these settings are often prototypical in nature and driven by iterative de-
velopment, so reproducibility and transparency are a great concern. It is essential to keep track
of the relationship between input data, choices in model parameters, the code version in use, as
well as performance measures and generated outputs at all times. This requires a data manage-
ment platform that automatically records the changes made and their effects. Moreover, results

1 https://www.helmholtz.ai
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Figure 1: Instance segmentation using ML. Convolutional neural networks are used to detect
bubbles in images of air-water flows [HSA"22a]. Shown here is the application of a trained
network [HSA "22b] on synthetic test data. Image: Sebastian Starke.

need to be put into relation to the real experiment. However, existing experiment tracking tools
that practitioners actually use, such as Weights & Biases [Bie20] and MLFlow [ZCD™" 18], live
entirely in the ML domain. Their workflow begins with the assumption that data is available and
ends after model training or inference.

Our envisioned platform inter-operates with the domain specific tools already used by the
scientists, and is able to extract relevant metadata. It can also make persistent any additional
information such as papers the work was based on, documentation of software components,
workflows, or failure cases, and make it possible to publish these metadata in machine-readable
formats. Moreover, the platform should enable the comprehensible development of ML models
alongside the experiment. This would allow different teams (e.g. experimentalists and Al spe-
cialists) to work together on the same project in a seamless manner, and help generate FAIRer
outcomes. In the long term it should aid in establishing digital twins of facilities, and making
their maintenance a part of the data management process.

In this paper, we will examine whether our data management system HELIPORT can become
such a platform. We start by establishing use cases and stating our analysis approach in Section 2.
In Section 3, we analyse the requirements for our use cases and discuss metadata formats and
tooling, as well as features in HELIPORT which can be applied to the use cases. Finally, in
Section 4, we discuss the results and provide an outlook for future work.

2 Approach

As the basis for our investigation, we selected a number of use cases that members of our local
Helmholtz AI unit have worked on, and that cover the research areas of HZDR well.

Figure 1 exemplifies a use case from the research area Energy where ML is used in the pro-
cessing of videos recorded during an experiment to detect gas bubbles in a liquid. While the
example shown in the figure uses images that were artificially created by simulation software,
the approach is applicable to many experiments in fluid dynamics that involve bubbly flows. In
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Figure 2: Convolutional neural networks are used as surrogate models for computationally ex-
pensive Monte Carlo simulations. The model predicts the linear energy transfer (LET) a patient
is exposed to during proton-beam radiotherapy based on the three-dimensional dose distribution
obtained during the treatment planning process. [SEZ"22] Image: Sebastian Starke.
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Figure 3: This example shows reconstructions of the phase space distribution at different loca-
tions along the COXINEL beamline [CAB"20] using normalizing flows neural networks. Im-
ages: Anna Willmann; Couprie et al.
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Figure 2, an example from the Health research area is shown. Here, deep learning is used as
an alternative to a more computationally expensive Monte Carlo simulation which determines
the LET a patient is exposed to during radiation treatment. The COXINEL beamline shown
in Figure 3 is an experiment from the Matter research area where surrogate models and virtual
diagnostics are developed as part of a digital twin of the beamline.

We examined these use cases, identifying their requirements to the documentation system,
and the metadata they produce which could be used for a more FAIR description of the experi-
ment. We captured both the broader picture how documentation of these experiments could be
improved, and collected concrete types of metadata that would be useful to document.

Next, we reviewed a number of tools for administering and tracking ML experiments that
researchers use in their daily work. A variety of tools in this field exists. However, they typically
lack the ability to collect provenance metadata of the used and produced artifacts [SS23]. We
focused on the metadata they store about the ML experiment, and whether it can be extracted
and used for documentation purposes. The particular tools looked at were TensorBoard, Weights
& Biases (WandB), and MLflow, as these are popular options that were brought up in discussion
with ML practitioners.

We also explored the landscape of ML metadata formats, specifically vocabularies and on-
tologies, focusing on the aspects of ML they cover (software, provenance, techniques, ...) and
whether established tooling exists that produces metadata in the given format, or makes use of
them. Additionally, we presented our findings to colleagues from the ML field and fellow re-
search software engineers (RSEs) to gather their feedback on the popularity of the metadata
formats.

Finally, we assessed to what extent existing features in HELIPORT could be used to support
the presented use cases and which additional features would need to be implemented.

3 Evaluation

The evaluation begins with the analysis of the requirements of the use cases with regard to
documentation, and the metadata which can be collected for a more comprehensible description
of the experiment. Afterwards, we examine different experiment tracking tools used by ML
practitioners, as well as metadata formats, related tooling, and their popularity. Finally, we
discuss features already available in HELIPORT and possible future improvements that could be
used for documentation of the use cases.

3.1 Analysis of Use Case Metadata and Documentation Requirements

For all endeavors in ML, regardless of the use case, reproducibility is of key importance. There-
fore, certain pieces of information about the training process need to be well documented:

Code and configuration The software, programs and scripts written for the purpose of the ex-
periment and the used configurations.

Environment Software and runtime environment such as third-party tools and libraries used as
dependencies, and container images.
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Datasets and models Versioned training datasets, as well as trained models and their perfor-
mance metrics (e.g. accuracy, precision) for each training run.

A shift in consciousness over the last years brought attention to energy consumption of com-
puting efforts. To meet demands in this regard, the following should also be documented:

Compute resources used This comprises metrics such as the processing units (number of CPU
and GPU cores), runtime (wall time), compute (e.g. in GPU hours) and used energy, both
for training and inference.

To be able to describe machine learning as part of a larger experiments, the following require-
ments were identified:

Model provenance For each model, the software and training data used for its creation and their
exact versions are known and can be retraced.

Project description across domains E.g. model inference can be described as a machine learn-
ing process but also as a computational workflow; data can be described in its role as
training data but also as a published dataset with authorship information.

Identification of upstream changes Datasets used for training in ML experiments are often
measurements from the real experiments and thus are subject to change. Changes in the
dataset must be identifiable as such because they influence the model training and will
cause different outcomes.

Identification of downstream benefits Users should be able to find the model and its outputs
that facilitated results or findings, or that were used as a basis for decision making.

Collection of resources General collection of resources that are relevant for a project such
as documentation, proposals, related projects, publications the work is based on (litera-
ture/reference management), new publications being worked on, training materials, tutori-
als, ...

In order to not interfere with personal workflows of the researchers, the documentation tool
should require little to no additional care when conducting experiments. Therefore, it should
integrate seamlessly with their established personal workflows. Ideally, it could even help auto-
mate previously manual tasks.

Seamless integration with established tools, libraries, and workflows, such as MLflow, Tensor-
Board, Weights & Biases, Jupyter Notebooks, Python and shell scripts, . ..

Automation of manual tasks such as creation of assets for publications, e.g. visualization of
any of the metadata mentioned above, textual or tabular representations such as basic
model cards [MWZ " 19].
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MLOps for ML Experiments? A question that was raised in discussion with our colleagues
was: “Can we support scientists by integrating MLOps in HELIPORT?” However, we found that
MLOps and scientists performing ML experiments have quite different requirements. MLOps
engineers are concerned with the administration of machine learning environments, including all
the steps from the collection of datasets, training of the models, and deployment and monitoring
of services in production. They aim for reliability of the infrastructure and reproducibility of
the models. While ML scientists share the goal of reproducibility, they usually don’t administer
any infrastructure or services. Models also might not even reach production status if they don’t
produce the desired results. Moreover, for models that are deemed fit for their purpose, scientists
often choose varying modes of interaction. They are rarely offered as part of an integrated service
but usually shared on network or USB drives. While MLOps might become more relevant for
such cases when domain scientists want to apply a developed model productively, we consider
the documentation of model development and its relation to the experiment more important at
the current point in time.

3.2 ML Experiment Tracking Tools

As mentioned above, the tools we assessed were chosen based on conversations with practition-
ers and their perceived popularity of the tools among their peers. MLflow and Weights & Biases
(WandB) are both web services. While TensorBoard is also served as a website, it is not intended
to be run as infrastructure; it is typically run locally or as part of a Jupyter Notebook. Tensor-
Board and MLflow are open source software, whereas WandB is a proprietary, commercially
available software.

TensorBoard TensorBoard? is part of the TensorFlow ecosystem. Its makers describe it as a
“visualization toolkit” as by itself, it does not provide extended tracking capabilities that other
tools offer. When used with TensorFlow, it is usually loaded and launched from within a Jupyter
notebook via a “magic command”. However, it is also possible to use it with other ML frame-
works such as PyTorch? which provides a SummaryWriter class that can be used to write
compatible metadata to disk. TensorBoard tracks and visualizes model performance metrics dur-
ing the training process. It can also visualize operations and layers of a model in a graph, and
display datasets (e.g. text or images). Since TensorBoard is a web application, all metadata can
in theory be retrieved via its web API, however this is not intended as a general purpose inter-
face. Provenance data is not recorded. For this purpose, the ML Metadata (MLMD) library* can
be used. However, this requires more additional instrumentation of the code and the recorded
metadata can not be displayed with TensorBoard. MLMD allows users to register datasets and
models as artifacts, and record run code as executions. Artifacts and executions are connected
via contexts which may represent, e.g., projects or experiments. Recorded metadata is stored in
a database and can be queried, though it is only available in the library’s own data model, not in
a standardized, interoperable format.

2 https://www.tensorflow.org/tensorboard
3 https://pytorch.org/
4 https://www.tensorflow.org/tfx/guide/mlmd
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Weights & Biases Weights & Biases® is an ML experiment tracking platform which can be
used from a Python client library. Experiments are captured as “runs” which represent a train-
ing run with a given “config” (i.e., a set of hyperparameters, the dataset, independent variables).
Runs can be tagged with arbitrary labels, e.g. to identify baseline or production models. More-
over, they can be provided with plain text notes, and grouped into namespaces called “projects”.
The tracking of metrics is carried out via manual instrumentation of the user’s code. Calls to
the log function take a dictionary of arbitrary metrics (e.g. accuracy, loss) or media (e.g. im-
ages, tables, plots), and the training step as their input. In addition, each logging call can also
automatically track the state of the Git repository of the code, and system metrics such as GPU
utilization. WandB can also track artifacts (e.g. datasets or models) which work similarly to files
and directories. A model registry is provided which, among other features, can show “lineage
maps” of the registered models, e.g. to visualize how models were produced in training runs and
later used in evaluations. WandB allows users to create reports of their findings using formatted
text and rich media including the created plots. These reports can be viewed via the website and
exported as PDF or zipped LaTeX files. An export API for most of the recorded metadata is
available, but export in a standardized format is not possible.

MLflow MLflow® allows users to track their ML experiments via Python, R, Java, and REST
APIs. This means, user code has to be adapted to use the API. MLflow’s tracking capabili-
ties are based on runs, i.e. executions of code, which can be grouped into experiments. For
each run, model parameters, metrics and output files are recorded. Additional metadata can be
tracked via tags. A predefined set of “system tags” is automatically tracked and includes, among
other things, the Git repository and commit of the source code, and the Docker container’s im-
age ID. Moreover, MLflow provides a model registry which allows registration, versioning, and
annotation of model artifacts. While all recorded metadata can be retrieved via the API, it is
not possible to extract any information in an interoperable format. This problem is tackled by
MLAow2PROV [SS23] which we discuss in Subsection 3.4.

3.3 ML Metadata Formats

For this section, we focused our analysis on general machine learning ontologies and approaches
that direct efforts at the documentation of workflows including Jupyter Notebooks. In sub-fields
or related fields like data mining, a variety of ontologies such as Exposé [VS10], OntoDM-
core [PSD14], and DMOP [KEd " 15] have been proposed. As these are usually only partially
applicable to general ML, they were not considered. High-level ML ontologies often suffer
from low adoption [SS23] but they will likely serve the high-level documentation approach of
HELIPORT well.

MEX MEX [EMNT15] is a vocabulary for exchanging basic information about ML experi-
ments, independent of their concrete implementation. It is based on the PROV ontology’, reusing

5 https://wandb.ai/site
6 https:/mlflow.org/
7 https://www.w3.org/TR/prov-o/
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its concept of entities, agents, and activities, and also uses terms from Dublin Core® and DOAP’.
The vocabulary is split into three namespaces. MEX-Core comprises, among others, terms to
describe experiments, their configurations and executions, as well as models and datasets. It can
also describe the used hardware environment. MEX-Algorithm can be used to describe charac-
teristics of ML algorithms such as their learning method (e.g. reinforcement or supervised), the
learning problem (e.g. meta-heuristic or association), and the algorithm class (e.g. artificial neu-
ral network). MEX-Performance provides various measures, including classification, regression,
and statistical measures, as well as the possibility of user-defined performance metrics. Through
its high-level approach MEX aims to achieve high interoperability.

ML-Schema ML-Schema [PEL " 18] was developed by the W3C Machine Learning Schema
Community Group. It is a top-level ontology for the description of ML algorithms, datasets, and
experiments, providing terms such as task, algorithm, hyperparameter, and run. ML-Schema
aims to be a commonly used standard that can be extended and specialized for more domain-
specific use cases, e.g. in the area of data mining. Mappings from ML-Schema to other ontolo-
gies are also provided by the authors. The schema is meant to be used for all linked open data
exports from OpenML!'? in the future. Its general applicability and existing mappings to other
ontologies, as well as being a W3C recommendation make ML-Schema a good fit for adoption
in HELIPORT. However, the low availability of tooling, e.g. compared to PROV, needs to be
considered.

PROV-ML PROV-ML [SAL™ 19] combines approaches in collecting provenance information
as well as ML-related metadata by extending both PROV and ML-Schema. This allows users to
adequately represent domain-specific data which was created early in the experiment lifecycle,
independently of ML, e.g. through data curation or conduction of lab experiments. PROV-
ML distinguishes between prospective and retrospective provenance metadata, such as abstract
definitions of learning workflows (prospective) and concrete executions of the workflow (retro-
spective). An additional feature of PROV-ML that is not part of ML-Schema is the representation
of learning stages, i.e. training, validation, and test. This ontology was developed as part of the
ProvLake'! platform which the authors extended. Due to its bilateral approach towards meta-
data, PROV-ML suits HELIPORT better than ML-Schema alone, although lack of existing tools
(apart from ProvLake) is an issue in this case as well.

ReproduceMe-ML ReproduceMe-ML [SLK21] extends REPRODUCE-ME [SK17], an on-
tology to describe provenance of microscopy experiments, to the area of ML, while aiming to
be compatible with ML-Schema and MEX vocabulary. REPRODUCE-ME in turn uses PROV
and P-Plan'”. Due to a focus on ML experiments conducted with Jupyter Notebooks, some of
the approaches taken by ReproduceMe-ML can certainly be an inspiration for future work on

8 https://www.dublincore.org

9 https://github.com/ewilderj/doap/wiki

10 hitps://www.openml.org

I https://research.ibm.com/projects/provlake
12 http://vocab.linkeddata.es/p-plan/index.html
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HELIPORT. However, due to its basis in microscopy experiments, the ontologies used entail a
lot of specific terms that are not applicable to most other projects which makes it unsuitable for
integration in HELIPORT.

SML The Semantic Machine Learning Ontology (SML) [KMC23] is a model for describing
ML models both in a human-understandable and machine-understandable way. It focuses on fa-
cilitating model selection by non-expert users by allowing them to evaluate and compare models
based on their characteristics. Such characteristics can be context of the data (e.g. spatial and
temporal information on collection circumstances), evaluation metrics and scores, and the appli-
cation domain of the model (e.g. healthcare). While being able to compare models is certainly
a concern when they are published, SML is not a good fit for documentation in HELIPORT as
the context is usually already given through the project. Moreover, the experimental, iterative
experimentation process is not adequately described by this ontology due to its different focus.

3.4 ML Metadata Tooling

PROYV Ontology Tools Multiple of the ontologies examined in Subsection 3.3 are based on
the PROV data model which is well established by now and has accumulated a large ecosys-
tem of existing tools. This includes, among others, services such as the provenance repository
ProvStore, a validator with REST API, a service to translate between different PROV representa-
tions, and a PROV Notation editor (all four on Open Provenance'?), libraries and toolkits like the
PROV Python library'#, ProvToolbox'®, and RDFLib'® which ships with the PROV namespace
builtin. Different visualization tools such as ProvViz'’ and the associated JavaScript library, as
well as a variety of educational materials and guides like the PROV-PRIMER'® also exist. This
creates a great foundation for HELIPORT to build upon PROV. However, in the context of ML
experiments, there is a lack of tools that provide PROV metadata to even start and make use of
these tools.

ProvBook ProvBook [SK18] is an extension for Jupyter Notebook that collects provenance
information of executed notebooks. Tracking is carried out on a per-cell basis and on a time scale
that allows users to inspect previous contents of the cell. Rather than tracking files, artifacts, or
software versions, the literal inputs and outputs are stored. All data can be exported as RDF
in Turtle syntax using Jupyter Notebook-related terms of the REPRODUCE-ME ontology. Due
to the provenance being recorded per cell, this tool does not match the high-level approach of
HELIPORT.

MLAlow2PROV MLflow2PROV [SS23] is a tool which extracts experimental metadata from
MLflow and Git repositories storing the associated code. Its provenance model is compatible

13 https://openprovenance.org/

14 hitps://github.com/trungdong/prov

15 https://github.com/lucmoreau/ProvToolbox
16 hitps://github.com/RDFLib/rdflib

17 https://provviz.com/

18 https://www.w3.org/TR/prov-primer/
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with the PROV ontology, thus existing tooling from the PROV ecosystem can be reused when
utilizing the tool. MLflow2PROV focuses explicitly on extracting provenance information hid-
den in Git repos and using it to enrich the recorded metadata stored in MLflow. It is implemented
as a command-line tool that provides subcommands to extract, merge, and transform metadata,
and allows reading and writing provenance documents from/to files. The subcommands can be
chained similarly to shell pipelines. Additionally, users can print statistics about their documents.

3.5 Popularity of MLL Metadata Schemas

The popularity of the metadata formats examined was assessed in the context of this work by
talking to ML practitioners and RSEs. RSEs were addressed in the form of a talk [PKS24] at the
deRSE24 conference (“AI/ML Research Software” session) and a presentation [KMP24] as part
of the HiRSE seminar series'”. We listed the following ontologies on a slide and asked attendants
about their popularity or adoption: ML-Schema, SML, DMP, OntoDM-core, Exposé, MEX,
REPRODUCE-ME, ReproduceMe-ML, and PROV. As of submission of this paper, we have
not received any feedback on ML ontologies after these presentations. ML practitioners were
contacted through a message to the “ML@HZDR” chat room (~300 members) on the Helmholtz
Cloud service’” Mattermost. We received a single response from a person claiming to have heard
of ML-Schema but to not have interacted with it themselves. Based on the reluctant feedback,
we deem these ontologies and vocabularies to be virtually unknown by practitioners in the fields
we reached. Nevertheless, this approach was rather qualitative and a more thorough investigation
would be needed to reach a conclusion on this question.

3.6 HELIPORT

The HELIPORT software, developed in the Helmholtz Metadata Collaboration (HMC) project
HELIPORT?!, is implemented as a web application that integrates with a variety of external
systems that researchers use in their daily work. The source code of the application is avail-
able in [VUS"23]. In addition, the “flagship” instance at HZDR is accessible to all Helmholtz
employees via the Helmholtz Cloud??.

In the following, we will explore features that are already present, and how they can be used
to more comprehensibly document ML experiments, as well as how HELIPORT could be im-
proved to adapt to this new use case. A tabular overview of the features and how they cover the
requirements described in Subsection 3.1 can be found in Table 2 at the end of the section.

Data Sources ‘“Data sources” are a resource type which can be used to refer to files or direc-
tories on network drives (SFTP, SMB) or online directories (HTTP), and are a way to register
datasets in HELIPORT. In the context of ML experiments, data sources can be used to docu-
ment artifacts such as training data sets, model files, or inference data. HELIPORT currently
describes all data sources as generic datasets without a more specific purpose. Thus, by default,

19 https://www.helmholtz-hirse.de/series/2024_04_11-seminar_28.html
20 https://helmholtz.cloud

21 https://heliport.hzdr.de

22 https://heliport.helmholtz.cloud
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training data and test data can only be described by names or tags. Similarly, models registered
as datasets are not automatically enriched with metadata pertaining to the training process.

Workflows Workflows in HELIPORT refer to computational workflows (see [GCS™*20]) and
are based on a subset of the Common Workflow Language (CWL)?? specification. CWL allows
for clear definition of the tools involved in a workflow, their interactions, as well as inputs and
outputs. HELIPORT stores provenance metadata accordingly. Performance metadata is only
recorded at a basic level, e.g. program runtime (wall time), so the need for extended reporting of
the used compute resources can only be met in part. Using the built-in CWL execution in HELI-
PORT fits well established, fixed workflows where exploration is carried out by selecting from
a range of methods and tweaking parameters. It is not suitable for frequently changing custom
source code developed during ML experiments, or even interactive programming carried out in
Juypter Notebooks. HELIPORT can also currently not be used to document, in an automated
fashion, workflows run in other external workflow systems such as REANA?*, AiiDA%, or Fire-
Works’®. However, since usage of computational workflows is an important aspect to document
in a FAIR experiment, alternative concepts such as those for Jupyter Notebooks presented in
Subsection 3.4 need to be considered. Performance of the trained ML model is not recorded as
neither CWL nor HELIPORT have knowledge about these metadata.

Documentation ‘“Documentation” resources in HELIPORT can be used to reference any doc-
umentation relevant to the project. The registered resource is presented to the members of the
project as a link without any additional functionality. Documentation resources can be used for a
variety of materials, such as proposals, literature, and training materials, related to the ML exper-
iment. Publications which are being worked on in conjunction with the project can be registered
in the “ShareLaTeX” app, if a ShareLaTeX or Overleaf instance is used. Completed publications
(papers, datasets, software) can be registered under “Publications”. Entries of these types also
simply link to the resource.

Digital Objects Digital objects are a fundamental part of HELIPORT’s data model. They serve
as a common abstraction layer and base class for all resources that can be linked in HELIPORT.
Digital objects comprise basic metadata about the resource, such as owner, label, description,
and category, as well as a globally unique persistent identifier (PID). Depending on the type
of resource, digital objects can also contain more specific metadata, e.g. in the case of data
sources, the uniform resource identifier (URI) that points to the data. The serialization process
takes into account the resource type to decide which metadata schemes to use to describe the
object. An overview of ontologies and vocabularies used in HELIPORT’s metadata export can
be found in Table 1 and an example export is shown in Listing 1. Resource types for digital
objects related to ML experiments currently do not exist. Users can enrich a digital object’s
properties with semantic triples manually, either based on existing ontologies, or using their own

23 https://www.commonwl.org

24 https://reana.io/

25 https://www.aiida.net/

26 hitps://materialsproject.github.io/fireworks/
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Table 1: Ontologies, vocabularies and schemas used for resource description in HELIPORT.
Only a selection of the resource types and terms used in HELIPORT is listed.

Resource type ~ Schema Terms used
Project http://purl.org/vocab/frbr/core owner
Person http://xmlns.com/foaf/0.1/ firstName, lastName
Data source http://purl.org/dc/dcmitype/ Dataset
Workflow http://w3id.org/cwl/cwl CommandLineTool,
inputs
Documentation  http://purl.org/spar/fabio/ PersonalCommunication
Source code http://purl.org/spar/fabio/ Repository
Any http://purl.org/dc/terms/ description, isPartOf
http://schema.org/ dateDeleted,
dateModified
http://rdfs.org/scot/ns has_tag

http://www.w3.0rg/2000/01/rdf-schema label

terms. Automated metadata discovery from ML experiment tracking tools and a larger variety
of workflow systems would be an improvement. Appropriate metadata formats discussed in
Subsection 3.3 need to be integrated in HELIPORT accordingly. Incorporating publicly available
knowledge graphs like DBpedia’’, Wikidata’® or unHIDE? as metadata sources could make
working with digital objects more approachable for a wider audience, if appropriate searching
and linking functionality is provided.

Landing Pages Each digital object has its own landing page which can be reached by resolv-
ing the PID of the resource. Landing pages present the metadata stored in the digital object in
a human-readable fashion and offer metadata exports in a variety of established formats, e.g.
DataCite for bibliographic metadata, or different Resource Description Framework (RDF) se-
rializations for semantic properties. They also make resource metadata machine-readable by
implementing HTTP content negotiation, allowing clients to request any of the available meta-
data formats directly. Landing pages of models or datasets could, in the future, be extended with
a dataset or model card view, as the concept of providing an overview of the objects’ metadata is
quite similar.

Digital Object Graphs Digital object graphs allow users to document and visualize relations
between digital objects. This feature can be used to provide different views into a project and the
resources that are part of it. Examples of facets that could be visualized are:

* Model provenance (relations between training datasets and models),

27 hitps://www.dbpedia.org/
28 hitps://www.wikidata.org/
29 https://search.unhide.helmholtz- metadaten.de/
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Listing 1: Metadata export initiated from a HELIPORT landing page, serialized into Turtle syn-
tax. These metadata describe a GitHub repository that was registered as part of a HELIPORT
project. The PID of the repository (https://hdl.handle.net/20.500.12865/HELIPORT.version_
control.46) resolves to its landing page.

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix fabio: <http://purl.org/spar/fabio/>

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix sdo: <https://schema.org/>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

<https://hdl.handle.net/20.500.12865/HELIPORT.version_control.46> a
fabio:Repository ;

rdfs:label "SOTA on Uncertainties GitHub Repository" ;

dcterms:created "2022-06-08T14:11:48.050530+00:00"""xsd:dateTime ;

dcterms:isPartOf
<https://hdl.handle.net/20.500.12865/HZDR.Projects.2022.FWCC.Project.86>

4
foaf:primaryTopic "https://github.com/psteinb/sota_on_uncertainties" ;
sdo:dateModified "2024-04-25T13:06:36.629973+00:00"""xsd:dateTime

* Computational workflows (relations between workflow runs, used software, and artifacts),
* Scientific output (relations between papers and associated data and software publications),

* Project contributors (people and institutions) and their roles.

Object graphs could also be used to show experiments and their digital twins side by side, e.g.
to juxtapose experiment vs. simulation, or devices vs. virtual diagnostics. An example of this is
shown in Figure 4. Another possible use-case for such graphs is the identification of upstream
changes and downstream benefits of a given ML model. However, this would require relevant
provenance metadata for all steps from training dataset creation to the results of an inference run
of the model. Currently, digital object graphs still have to be set up manually, but once digital
objects can be automatically enriched with more metadata, a default set of graphs could also be
provided automatically. Moreover, digital object graphs could be used as figures in publications,
addressing the need for publication assets. However, this requires the user to take a screenshot

manually as they can currently not be exported as vector graphics (SVG) or graph descriptions
(DOT, RDF).

Missing Features Currently, HELIPORT does not provide seamless integration from other
tools. While a REST API is available that can be used to read and write most of the captured
metadata, no client libraries are available to automate the process. However, a Python library is
planned.*”

30 See presentation “Pioneering Digital Research Landscapes: Innovations at HZDR™ (https://www.hzdr.de/
publications/Publ-38785).
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Figure 4: A digital object graph that was manually created in HELIPORT to show parallels
between simulation runs and experiments. The green text and line were added in post to aid the

visualization.

Table 2: An overview of the requirements identified in 3.1 and whether they are covered fully
(v'), partially (O), or not at all (X) by HELIPORT.

Requirement

Covered Notes

Code and configuration
Environment
Datasets and models

Only fixed workflows are covered
Known partially but no traceability
Covered by “data sources”, but no ML context given

Compute resources used

Only runtime (wall time)

Model provenance
Cross-domain description
Upstream changes
Downstream benefits
Collection of resources

Known partially but no traceability

Possible via manual use of different ontologies
Possible via digital object graphs

Possible via digital object graphs

Integration
Automation

XX [ NO000O0O%x| 0|00

Python library planned
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4 Discussion and Outlook

In this article, we have shown that existing features such as documentation resources, digital
object graphs, and data sources in HELIPORT can help documenting ML experiments by em-
bedding them in the larger context of scientific experiments, providing different views into the
metadata, and building digital twins. But to make this potential usable for scientists, meta-
data acquisition, especially of computational and machine learning workflows, needs to be im-
proved. Development of a HELIPORT Python library will be a serviceable approach in this
direction. Provision of more, potentially arbitrary metadata might lead to new requirements in
HELIPORT’s data model. The areas of semantic web and knowledge graphs offer a variety of
paths that can be explored in this regard.

Obtaining high-quality, rich experiment metadata from tools that are well established and used
by ML practitioners is a large concern. Changing over to different tools that improve metadata
extraction is not a consideration as we do not want to disrupt researchers’ personal workflows.
While some metadata can be extracted from existing workflows, e.g. via instrumentation of the
code, subsequent translation of the metadata into a fitting metadata scheme will be required. This
will establish a common interface layer between HELIPORT and ML experiment tracking tools.
A good candidate for this layer would be PROV-ML.

Looking forward, we will approach further development of HELIPORT with the mentioned
issues in mind, and select concrete use cases from the ML domain to design and implement new
features.

Acknowledgements: The project HELIPORT (ZT-I-PF-3-021) was funded by the "Initiative
and Networking Fund of the Helmholtz Association” in the framework of the first “Helmholtz
Metadata Collaboration (HMC)” project call 2021.
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