
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

Software FAIRness, Documentation and
Development Practices in Potsdam
Researchers’ GitHub Repositories

Akshay Devkate, Anna-Lena Lamprecht

DOI: 10.14279/eceasst.v83.2595

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

https://doi.org/10.14279/eceasst.v83.2595
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/

ECEASST

Software FAIRness, Documentation and Development Practices in
Potsdam Researchers’ GitHub Repositories

Akshay Devkate1, Anna-Lena Lamprecht2

1 akshay.devkate@uni-potsdam.de
2 anna-lena.lamprecht@uni-potsdam.de

Institute of Computer Science, University of Potsdam

Abstract: This study examines GitHub repositories of researchers affiliated with
organizations in Potsdam, aiming to analyze various aspects of software FAIR-
ness, documentation quality, and software development practices. Our methodol-
ogy builds upon the SWORDS pipeline that was initially developed to examine the
GitHub repositories of researchers affiliated with Utrecht University for FAIRness-
related parameters. Our extended version of the pipeline also collects information
about the documentation available (project description, installation instructions, us-
age guides) and development practices followed (explicit requirements, use of con-
tinuous integration, use of linters, automated testing, comments at start of code files).
Our results indicate a diverse range of adherence to FAIR principles and software
development practices among the repositories. While some repositories exhibit ex-
emplary practices with thorough documentation and robust community participa-
tion, others lack basic elements crucial for software reusability and interoperability.
These findings highlight the need for enhanced training and resources to support
researchers in adopting best practices of research software development.

Keywords: FAIR4RS, Software Development Practices, Repository Analysis

1 Introduction

Over the past years, numerous “best” or recommended practices for developing research software
have been proposed. These guidelines aim to enhance the quality, reproducibility, and sustain-
ability of scientific software. Among the most notable are the FAIR Principles for Research
Software [BCK+22, HKB+22, LGK+19], which emphasize Findability, Accessibility, Interop-
erability, and Reusability, and corresponding recommendations (https://fair-software.eu/). Addi-
tionally, several frameworks and guidelines, such as the Best Practices for Scientific Computing
[SGM21, WAB+14], Good Enough Practices for Scientific Computing [WBC+17], the DLR’s
Software Development Guidelines [SMH18] and various ”10 Simple Rules” papers on program-
ming and software management (https://collections.plos.org/collection/ten-simple-rules/), offer
pragmatic advice for researchers and software engineers. Interestingly, classic software engi-
neering frameworks like the capability maturity model (CMM) [PCCW93] for helping devel-
opers select process-improvement strategies have so far not played a significant role in research
software development, although some works have explored its use for research data management
[QCK14] and research software projects [DBM+24].

1 / 21

https://fair-software.eu/
https://collections.plos.org/collection/ten-simple-rules/

Assessing Potsdam Researchers’ GitHub Repositories

Despite the plethora of guidelines, there remains a significant gap in understanding how well
these practices are actually followed by research software developers. Research software devel-
opers are a large and heterogeneous group that includes both professional Research Software
Engineers (RSEs) and the diverse types of researchers who code as part of their scientific work.
A thorough understanding of adherence to recommended research software development prac-
tices is crucial for identifying where RSEs and researchers who code need additional training
or support, and what organisations or communities can do to help them. Moreover, it helps to
identify areas where further research is needed to develop new, suitable methods and tools for
research software development.

In this paper, we present our approach to assessing the adoption of recommended practices
and the level of software FAIRness, documentation, and development practices among Potsdam
researchers’ GitHub repositories. Our analysis of software repositories revealed that half do
not specify dependency requirements, and none document the use of software quality checklists.
Basic project information is usually provided, but installation and usage guides are often missing,
and the adoption of continuous integration along with automated testing and linting rules in
continuous integration is low, indicating these practices are not a priority for scientific software
developers.

The paper is structured as follows: Section 2 surveys related work, including studies that aim
to understand adherence to best practices. Section 3 describes the methods of data collection and
analysis we applied. Section 4 presents our results, and Section 5 discusses threats to validity.
Section 6 concludes the paper with a summary of our findings and directions for future work.
The dataset and analysis code that was used for this study is provided in as supplemental data to
this article.

2 Related Work

Empirical studies specifically targeting research software and research software engineering are
still relatively scarce. Especially empirical analyses as in this paper, focusing on artifacts in
research software repositories, are a quite recent development, while most existing work is based
on surveying researchers and reviewing literature. Table 1 surveys some significant studies of
the past years. These studies touch on a variety of topics, including scientific documentation,
software engineering concepts, software quality, verification, testing, test-driven development,
and the use of version control tools like Git by research software developers.

For example, in 2010 Nguyen-Hoan Luke et. al. [NFS10] surveyed 47 developers of sci-
entific software, aiming to find out where the scientific software development can be improved
aligning them with the previous studies. They found that adoption of Integrated Development
Environments (IDEs) and version control tools among the surveyed developers has risen, and
documentation seems to have become more widespread compared to earlier studies. However,
they pointed out a persisting need for improvement in the areas of scientific software develop-
ment regarding tool usage, documentation standards, testing protocols, and verification activities.

A survey study conducted by Hannay et al. [HMS+09] in 2009 aimed to gain insight into the
practices of scientific software developers. Hannay et al. found significant differences in un-
derstanding of software engineering concepts and recommended that understanding of software

2 / 21

ECEASST

Study Year Method Outcomes
How do scientists develop and
use scientific software? [NFS10]

2009 Survey Scientific software development
relies on peer learning and self-
study, testing is valued but not
well understood.

A survey of scientific software
development [HMS+09]

2010 Survey Highlights the need for better
tool adoption, documentation,
testing, and verification.

How do scientists develop soft-
ware? An external replication
[PWD18]

2017 Survey Encompasses R programming,
scientific software developers
are self taught, works alone, lack
of collaboration, and are insuffi-
ciently rewarded.

Test-driven development in sci-
entific software [NC17]

2015 Survey Discusses the challenges and
benefits of testing and refactor-
ing, offering TDD advice.

Towards computational repro-
ducibility: Researcher perspec-
tives on the use and sharing of
software [AB18]

2018 Survey Some practices ensure repro-
ducibility, but there is a lack
of long-term software mainte-
nance.

A survey of the state of the prac-
tice for research software in the
United States [CWR+22]

2022 Survey Focuses on software engineering
practices, testing, coding stan-
dards, and documentation.

Software engineering practices
for scientific software develop-
ment: A systematic mapping
study [AACC]

2021 Literature
review

Scientific software developers
prioritize implementation effi-
ciency through code reuse, third-
party libraries, and strong pro-
gramming techniques.

Table 1: Literature on development of research/scientific software quality

3 / 21

Assessing Potsdam Researchers’ GitHub Repositories

engineering concepts may increase if the development teams are larger. However, in a replica-
tion study conducted by Pinto et al. [PWD18] in 2017, the original hypothesis was contradicted
suggesting that there is no correlation between understanding of software engineering practices
amongst research software developers if the teams are larger.

In “A Survey of the State of Practice for Research Software in the United States” [CWR+22]
Carver et al. assess various aspects of software engineering practices, including testing, licens-
ing, continuous integration best practices, architecture design, requirements, peer code reviews,
and tools. This evaluation was conducted through a survey aimed at understanding the landscape
of research software engineering. Additionally, the survey investigated the availability of train-
ing, funding, and career pathways in research software engineering to provide a comprehensive
overview of the field. A variety of earlier surveys have offered insightful information about the
development and use of research software, as briefly explained above. With the available surveys
we can draw certain conclusions about software development techniques employed researchers.

Arvanitou et al. have conducted a systematic literature review of 39 papers [AACC], and
identified which of the software engineering practices which scientific software developer tends
to focus and found that practices such as code reuse, use of third-party libraries, and the appli-
cation of “good” programming techniques are given high importance. On the other hand, there
is a noticeable lack of empirical information concerning the possible trade-offs related to these
software approaches, namely their unintentional effects on other quality criteria. Arvanitou et
al. also note that further empirical research is needed to understand the kinds of quality methods
that research developers apply.

3 Method

For our study we adapted the SWORDS1 pipeline [BQSL22], originally developed for analyzing
GitHub repositories of Utrecht University researchers. The aim of this SWORDS@UU instance
was to find out more about the knowledge gaps and training needs of research software develop-
ers at Utrecht University, in the context of a strategic realignment of its central IT services. Also
being concerned with RSE-related training of students and research staff in Potsdam, we were
interested in corresponding insights for our university and other local research organizations. Ac-
cordingly, we decided to adapt the SWORDS pipeline to collect repositories of Potsdam-based
researchers, and also extended it to collect further variables for analysis.

Figure 1 summarizes the process, with dashed borders indicating the changes that we made to
the original SWORDS pipeline: In the first phase, GitHub profiles (users and organizations)
are identified by employing various methods, including GitHub search via the ghapi library
(https://ghapi.fast.ai), accessing data from Papers with Code (https://paperswithcode.com), a cus-
tomized collection method of GitHub organization commits to get the users who contributed to
one of the repositories of research organization, and additional manual collection to supplement
the above. In the second phase, repositories associated with the collected profiles are gathered
using the ghapi library. This step is repeated once with the additional conbtributores found in
organization repositories. In the third phase, a diverse set of variables is collected from the re-
trieved repositories, including FAIRness scores, software documentation, and indicators for the

1 Scan and revieW of Open Research Data and Software

4 / 21

https://ghapi.fast.ai
https://paperswithcode.com

ECEASST

Figure 1: Methods for collecting GitHub profiles and repositories

5 / 21

Assessing Potsdam Researchers’ GitHub Repositories

software development practices followed. These variables are later analyzed and visualized to
facilitate interpretation. We describe these three phases in more detail below.

3.1 Collecting GitHub profiles

The GitHub profiles we are interested in encompass user profiles of individuals (researchers who
are employed to work on a research project, academic staff, PhD candidates, postdoctoral re-
searchers, open-source contributors to research software, etc.) who have actively participated
in repositories affiliated with research institutes/organizations in Potsdam, as well as GitHub
organization profiles (research institutes, research organizations, smaller research projects and
research groups, repositories that have a paper publication) belonging to research institutes/or-
ganizations in Potsdam. For finding GitHub profiles of researchers and research organizations,
we employ multiple strategies that are available in the original SWORDS framework, and intro-
duce some new strategies:

• GitHub search: The GitHub search method uses the ghapi library to systematically re-
trieve all matching GitHub profiles with the query provided in the search argument. To
utilize this method effectively, we must establish search criteria that can include keywords
such as research groups, institute names, and complement them with other relevant identi-
fiers, such as the city name.

• Papers with Code: This approach gathers GitHub user profiles associated with reposito-
ries featured on https://paperswithcode.com. Papers with Code functions as a collaborative
platform committed to offering unrestricted access to machine-learning papers, along with
their corresponding GitHub open-source repositories. Using a topic search string input
via a command-line argument, the method leverages the PapersWithCodeClient module to
retrieve pertinent papers. Subsequently, it identifies the GitHub usernames linked to the
owners of these repositories.

• GitHub organization commits: The method to retrieve GitHub user profiles that have
contributed code or made at least one commit to repositories associated with GitHub or-
ganization profiles is iterated once. Initially, GitHub organization profiles are filtered,
followed by parsing the repositories associated with these profiles. Although this process
appears sequential, it includes a single feedback step in which the parsed repositories refine
the initial profile filtering. This approach ensures that contributors who do not explicitly
list their affiliations in their profiles or README files are still identified. By focusing on
organization profiles, the method also addresses the limitations of GitHub search method,
which may overlook contributors due to the absence of clear affiliation data.

• Adding users manually: Despite employing these methods for collecting GitHub user
profiles, numerous GitHub accounts were overlooked by the search. This happened pri-
marily because many profiles lack sufficient public information visible on their GitHub ac-
counts, rendering them unidentifiable through the aforementioned collection methods. As
a result, several accounts were manually added to the dataset by identifying known missing
researchers who appeared on research institution and university websites, but were absent

6 / 21

https://paperswithcode.com

ECEASST

from our dataset. We searched for these researchers using standard search engines with
keywords related to their research and then merged their profiles with the other GitHub
profiles obtained through our automated collection methods.

We identified several relevant GitHub organizations during this process, connected to the Uni-
versity of Potsdam, various local research institutes (Hasso Plattner Institute, Potsdam Institute
for Climate Impact Research, GFZ Helmholtz Centre for Geosciences, Berlin-Brandenburgische
Akademie der Wissenschaften, Leibniz Institute, Alfred Wegener Institute) and even some pri-
vate companies and associations (Open System Pharmacology, Potsdamer Bürgerstiftung).

Finally, we consolidated all user profiles from the various sources into a unified dataset. This
dataset was then meticulously examined to ensure accuracy and relevance, as we observed, for
example, instances where profiles not directly related to Potsdam, Germany, were included due to
keyword matches, such as researchers from Sunny Potsdam, USA. Following the consolidation,
we enriched the GitHub profiles with additional data about users’ affiliations. We annotated the
profiles to denote the method of collection, eliminated duplicate entries, and manually filtered
out irrelevant user profiles.

3.2 Collecting GitHub repositories

In the second step, the repositories associated with the GitHub profiles from the previous step
are collected and filtered. We used ghapi to retrieve all the repositories of GitHub profiles, pro-
cessing users and organizations separately. To better capture the iterative process involved, we
logically divided this step into two sub-steps. In Step 2a, we collected repositories from orga-
nizations and then used this data to feed back into the GitHub Organization Commit method to
collect additional GitHub user profiles. In Step 2b, after getting the additional user profiles, we
then collected all repositories associated with those individual users. During this process, we fil-
tered and removed duplicated (forked) repositories. We then classified the software projects into
DLR application classes [SMH18], enabling a more detailed analysis of the research software by
examining different metrics across all projects as well as within specific application classes.

3.2.1 Research Repositories

In the initial collection of GitHub repositories associated with Potsdam researchers and organiza-
tions, we filtered for those repositories that were used to analyze, interpret, and produce research
paper results, repositories used to reproduce or replicate research papers with other datasets, or
repositories that reference other research papers. While looking at repositories, there were some
repositories which do not have specific information about their publication or how it is used for
publication. However, they were funded by some research organization, so we have annotated
them as research repository, too. The probability of finding research repositories was higher
among the organization profiles than the among user profiles (see Figure 2). Still in our col-
lection user research repositories (990) outnumbered organization research repositories (559).
Given the limited number of repositories in both categories, which would not be sufficient for a
meaningful comparative analysis, we decided to merge them into a single dataset of then 1548
repositories in total.

7 / 21

Assessing Potsdam Researchers’ GitHub Repositories

(a) organisation repositories (b) user repositories

Figure 2: Research repositories found in the dataset

Application class Description Indicator
0 simple scripts and projects with

no distribution
single contributor, no forks, no
stars, no downloads

1 small projects, some distribution 1-3 contributors, some forks,
some stars, some downloads

2 Projects with distribution more than 4 contributors, more
downloads, more stars, more
forks with a community etc

3 Mission critical Not included in the study

Table 2: DLR Application Classes

3.2.2 DLR Application Classes

The DLR Software Engineering Guidelines [SMH18] provide a framework for good software de-
velopment practices at the German Aerospace Center (Deutsches Zentrum für Luft- und Raum-
fahrt, DLR). They define research software application classes ranging from 0-3 (see Table 2) as
an indicator for the software quality assurance measures required for a research software project.
The guidelines outline criteria for classifying research software based on its usage and distri-
bution. To use the application classes in our research, we identified concrete metrics such as
contributors, forks and stars count as suitable indicators (right column). Categorizing research
software into application classes was essential for comparing software development across dif-
ferent levels of distribution and usage. In our datasets, DLR application class 0 (primarily con-
sisting of small scripts or projects with no distribution) outnumbered the other DLR application
classes 1 and 2 (see Figure 3).

8 / 21

ECEASST

(a) organisation repositories (b) user repositories

Figure 3: Application classes of organization and user repositories.

3.3 Collecting Variables for Analysis

The software quality variables we collected in this study were carefully chosen through a com-
prehensive analysis of survey studies [PWD18, NC17, AB18, CWR+22] in line with recom-
mendations outlined in ”Best” [SGM21, WAB+14] and ”Good enough” [WBC+17] practices
for scientific computing. We prioritized those practices that were most feasible to assess in an
approach that involved gathering variables using semi-automated scripts for parsing, followed by
manual assessment. Given the extensive number of projects involved, we opted for quantitative
evaluation over qualitative analysis.

3.3.1 FAIR Score

The Python package howfairis [SVT+22] can be used to evaluate a repository’s adherence of re-
search software to the Five Recommendations for FAIR Software https://fair-software.eu). No-
tably, these recommendations already cover several of the ”Best” and ”Good enough” practices
in scientific computing. Concretely, they recommend to:

1. Use a publicly accessible repository with version control

2. Include a license

3. Register the software in a community registry

4. Enable software citation

5. Use a software quality checklist

Depending on how many of these recommendations the tool finds to be followed, it returns a
FAIR score between 0 and 5. Some repositories indicate their FAIR score with a corresponding
badge on the landing page.

9 / 21

https://fair-software.eu

Assessing Potsdam Researchers’ GitHub Repositories

3.3.2 Software Documentation

Next, we searched for documentation that would make it easier for users to install and use the
software, or to enable them to reuse it with their datasets:

• Project descriptions: Recognizing the diverse range of software types in the repository,
we conducted a quantitative analysis to ensure the presence of project descriptions or in-
troductions. This approach allowed us to efficiently assess the availability of repository’s
introductory information across all projects.

• Installation instructions: To provide a comprehensive overview, we focused on quanti-
tatively evaluating the installation guides. We ensured that repositories included sufficient
information on where to find installation instructions, whether within the README.md
file or linked to other resources such as Wiki pages or external websites.

• Usage guides: Our quantitative assessment of usage guides included checking for the
availability of help commands for command-line applications and ensuring that usage in-
formation was present in the README.md file or linked to other relevant resources. This
way we could gauge the accessibility of usage instructions across all repositories.

3.3.3 Software Development Practices

Following the ”Best” [SGM21, WAB+14] and ”Good enough” [WBC+17] scientific software
development practices suggested, we build scripts that automate the collection of the following
variables for analysis.

• Testing: We simply checked for the existence of a folder named test or tests within the
root directory of each repository.

• Making dependencies requirements explicit: The ”good enough practices” [WBC+17]
suggests to make dependency requirements explicit by adding a requirements.txt
file to the root directory of the project, or by adding a ”Getting started” section to the
README.md file. However, the paper only describes how to make dependency require-
ments explicit for Python. We extended that to check if dependency requirements are made
explicit for R by having DESCRIPTION in the root directory, and for C++ by checking
presence of CMakeList.txt in the root directory2.

• Continuous integration : Continuous integration is a crucial practice in software de-
velopment, encompassing various processes aimed at maintaining code quality and en-
suring its reliability. This includes the incorporation of linter rules (such as automated
code review, feedback on violation, consistent code base adhering linting rules of pro-
gramming language) within continuous integration to assess code quality with each com-
mit, along with the automation of testing procedures. To determine if continuous inte-
gration has been implemented within a repository, we examined the presence of spe-
cific files and folders located in the root directory. For example, we checked the exis-

2 As our collection has R, C++ being used most next to Python.

10 / 21

ECEASST

tence of the folder ./github/workflow to ascertain the utilization of GitHub Ac-
tions, .circleci/config.yml for CircleCI, and .travis.yml to confirm the
integration with Travis Continuous Integration.

• Linters in workflows: After confirming the integration of continuous integration, our
next step involved inspecting whether further linter rules were specified within .yml or
.yaml files. We scrutinized these files for the inclusion of linter names. While certain
projects aggregate all supplementary rules into a singular .yaml or .yml file, others may
distribute them across multiple files. Consequently, we carefully examined each file within
the respective continuous integration tool directory to ascertain the presence of linters. For
instance, in Python projects, we searched for linters like pylint, pycodestyle and flake8.
Additionally, for R projects, we checked for lintr and styler, whereas for C++ projects, we
looked for cpplint, cppcheck, and clang-tidy.

• Automated testing: We reviewed each file within the respective continuous integration
tool directory to ensure the presence of automated testing rules in .yml or .yaml file. For
example, in Python projects, we searched for testing frameworks such as pytest, unittest
and nose. Similarly, for R projects, we looked for testthat, while for C++ projects, we
sought out libraries like Google test and catch.

• Comment at the start of program/script.: The ”good enough practices” [WBC+17]
recommend having a brief comment at the start of a program that should include at least
one example of how the program is used. Additionally, they recommend developers to
indicate reasonable values for parameters. We only accessed the presence of comments at
start of every script by identifying the keywords that starts single or multiline comments
for Python, R, C++. For example:

Single line comment for Python

’’’ Multiline
comment for Python
’’’

We checked for the symbols #, ’’’, ", \\ which start the comments in the program
files. We then checked them across the repository in each code file and annotated less
if comments are present in less then 25% of program files, some if they are present in
between 25% - 50%, more if they are present in between 50% - 75% and most if they are
present in more then 75% of program files.

4 Results

In this section, we present the findings of our analysis on the FAIRness, documentation quality,
and software development practices of the GitHub repositories maintained by researchers affil-

11 / 21

Assessing Potsdam Researchers’ GitHub Repositories

iated with organizations in Potsdam. We detail the results of our assessments, highlighting key
trends and areas for improvement.

4.1 FAIRness

Figure 4: FAIRness

The spider diagram in Figure 4 summarizes the results of our FAIRness analysis of the repos-
itories. For each of the five recommendations, it shows in different colors representing the appli-
cation classes the percentage of repositories that follow these recommendations. Generally, we
observe a trend that higher application classes follow more of the recommendations, which is in
line with the expectation that software with greater distribution and usage adopt more best prac-
tices. More concretely, almost 90% of the application class 2 projects include a license, while
this is the case for about 75% of the class 1 projects and for about 60% of the class 0 projects. For
software citation, class 1 is the top scorer with about 40% of the projects enabling software cita-
tion, followed by roughly 20% of class 2 projects and about 10% of class 0 projects. The adoption
of publishing software in a registry and including a corresponding badge on the README.md
follows the same pattern. It should be noted here, however, that howfairis for this criterion only
checks for the presence of a registration badge in the README.md, so it might both miss reg-
istrations that are not reflected by a badge in the README.md, as well as erroneously count
pseudo-registrations that have a badge but are not known in the respective registry. Interestingly,
none of the repositories in our dataset have a checklist badge to demonstrate adherence to the

12 / 21

ECEASST

Open Source Security Foundation (OpenSSF) best practices (https://www.bestpractices.dev/en).
Trivially, all repositories in our dataset are from publicly accessible GitHub repositories and
therefore score 100% on the open source criterion. Clearly, there is still room for improving the
FAIRness score of research software projects across all application classes, although it is debat-
able, for example, whether publishing an application class 0 project to a registry is desirable.

4.2 Software Documentation

Figure 5: Software documentation

Figure 5 summarizes our findings regarding documentation in the research software projects
examined. It shows that basic information about the project or repository was present in most
of the projects across DLR application classes. However, installation instructions and usage
guides were absent in more than half of the repositories, even for application class 2 projects,
which have greater distribution. Nonetheless, there is a noticeable trend where the presence of
installation and usage guides increases with higher distribution levels, progressing from DLR
application class 0 to class 2.

4.3 Software Development Practices

In our evaluation of software development practices (see Section 3.3.3), we first assessed the
presence of testing across all repositories, irrespective of programming language. Subsequently,
we focused our analysis on specific practices for Python, R, and C++, as these were the most
prevalent languages in our dataset (see Figure 6). As detailed earlier, these practices included
checking for comments at the start of program scripts, making dependency requirements ex-

13 / 21

https://www.bestpractices.dev/en

Assessing Potsdam Researchers’ GitHub Repositories

plicit, implementing continuous integration, and using additional linter rules within continuous
integration and automated testing.

Figure 6: Most used programming languages in our dataset.

Testing. Figure 7 shows that the adoption of testing increases with higher application classes
(0, 1, and 2). The highest frequency of testing is observed in application class 2; however, it is
noteworthy that testing is still frequently neglected by developers within this class. It is arguable
that testing may be less critical in DLR application classes 0 and 1, as many of these repositories
consist merely of scripts for plotting or data cleaning. Moreover, over half of the repositories in
DLR application class 2 have indeed implemented testing.

Comment at the start of program/script. As Figure 8 shows, the practice of including com-
ments at the beginning of programming files is often overlooked by research software developers,
irrespective of the software’s classification into DLR application classes 0, 1, or 2. Only about
50% of the projects across application classes use such comments regularly.

Making dependency requirements explicit. We found that about half of the repositories, ir-
respective of their DLR application class, do not clearly specify their dependency requirements
(see Figure 9).

Continuous integration, linters in workflows, automated testing. Finally, as Figure 10 shows,
we found that the adoption of continuous integration is below 30% for DLR application class 2,

14 / 21

ECEASST

Figure 7: Testing (presence of test folder)

Figure 8: Comment at start

15 / 21

Assessing Potsdam Researchers’ GitHub Repositories

Figure 9: Dependencies explicit

Figure 10: Continuous integration

16 / 21

ECEASST

and even lower, below 15%, for application classes 0 and 1. The adoption of linter rules in CI
and automated testing is below 5%, indicating that these practices are not a priority for scientific
software developers. Note that while most of the repositories with continuous integration have
implemented it using GitHub actions, and small number repositories have implemented it using
TravisCI and CircleCI.

5 Threats to Validity

Several threats to the validity of our study must be acknowledged. First, the repository collection
is incomplete by design. Without a well-defined list of researchers affiliated with organizations in
Potsdam, we relied on a comprehensive but inherently incomplete strategy to identify them. This
has very likely led to an underrepresentation of certain researchers or projects. Generally, the
identification of GitHub repositories of Potsdam-based researchers turned out to be more difficult
than in Utrecht, where the personal web pages of university staff often point to their GitHub
profiles, and where the university actively promotes the use of its own GitHub organization
(https://github.com/UtrechtUniversity/getting-started).

Second, our study is subject to selection bias, as we only included projects that are already
publicly available on GitHub. This excludes any private or non-GitHub repositories, potentially
skewing the results. Also, the method does not take into account contributions from researchers
who commit to repositories that are not associated with their own organization. Thus, we are
likely missing external repositories that Potsdam-based researched contributed to. Similarly, we
did not filter the repositories by time of last activity. It could be argued, though, that repositories
that have not been active for, e.g., five or more years, are not representative of the current state of
the field and should be left out. We note that most repositories in our dataset have indeed shown
recent activity, but nevertheless we plan to explore the effects of such filtering in future work.

Third, the automated assessment of variables, while thorough, is not perfectly accurate. For
example, assessing testing through the presence of folders named ’test’ or ’tests’ appears not to be
the most effective approach. Manual inspection revealed that some repositories had implemented
testing but did not organize the test files in the root directory folders named ’test’ or ’tests’.
We are working now on assessing the presence of testing using a more diverse approach, for
example also examining imported libraries. Also, the analysis for comments at the beginning
of programming files was often inaccurate. While evaluating the presence of comments at the
start of programs, we did not assess the content of these comments. This approach may have led
to some false positives, as some Python files included file paths as comments at the start of the
program and copyright headers.

To mitigate some of these effects, several ongoing and future initiatives are in place. One
such initiative is the analysis of GitLab repositories from Potsdam University, currently being
undertaken as part of a Bachelor’s thesis. Additionally, an ongoing Master’s thesis aims to
develop an AI-based classification of research repositories and their application classes, which
could significantly enhance the accuracy and comprehensiveness of our analyses. We also plan
to conduct similar analyses on other repository collections to further validate and refine our
findings. For example, the SciCat project has set off to provide a curated dataset of scientific
software repositories [MMP+23], and will hopefully enable us to obtain more representative and

17 / 21

https://github.com/UtrechtUniversity/getting-started

Assessing Potsdam Researchers’ GitHub Repositories

generalizable results.
Furthermore, on a larger and more representative collection of repositories, it would be in-

teresting to assess how robust the analyses are against diversity within the projects such as, for
example, the application domain or choice of the programming language. This would also help
to understand how easy it is to apply/reuse the analysis framework to other project repositories.

6 Conclusion

This study examines the GitHub repositories of researchers affiliated with organizations in Pots-
dam, aiming to analyze various aspects of software FAIRness, documentation quality, and soft-
ware development practices. Using a comprehensive repository dataset, we assessed the degree
to which these researchers adhere to FAIR principles and best practices in software documenta-
tion and development. Our methodology builds upon the SWORDS pipeline, originally devel-
oped to evaluate the GitHub repositories of Utrecht University researchers for FAIRness-related
parameters. Our extended pipeline also collected information on the documentation available
(project description, installation instructions, usage guides) and development practices followed
(explicit requirements, use of continuous integration, use of linters, automated testing, comments
at the start of code files).

Our results indicate a diverse range of adherence to FAIR principles and software development
practices among the repositories. While some repositories exhibit exemplary practices with thor-
ough documentation and robust community participation, others lack basic elements crucial for
software reusability and interoperability. These findings underscore the need for enhanced train-
ing and resources to support researchers in adopting best practices in software development.

Several open questions remain to be investigated in future work. For example, do the results
differ for types of developers, such as PhD candidates versus professional RSEs? As there is not
”the one” leading guideline as a reference for software research engineers, some of the projects
could have decided to adhere to a certain guideline and therefore have obtained better results.
If that is the case, is there possibly a (unified) guideline that could be recommended? Could
quality metrics for research software projects be defined, like the quality indicators discussed
at the Helmholtz Association [CDJ+24]? And, related to this, how could it be avoided that
researchers start ”gaming” the metrics that they are evaluated with, without really improving the
overall quality of the software?

Bibliography

[AACC] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, J. C. Carver. Software engi-
neering practices for scientific software development: A systematic mapping study.
172:110848.
doi:10.1016/j.jss.2020.110848
https://www.sciencedirect.com/science/article/pii/S0164121220302387

[AB18] Y. AlNoamany, J. A. Borghi. Towards computational reproducibility: researcher
perspectives on the use and sharing of software. PeerJ Computer Science 4:e163,

18 / 21

http://dx.doi.org/10.1016/j.jss.2020.110848
https://www.sciencedirect.com/science/article/pii/S0164121220302387

ECEASST

Sept. 2018.
doi:10.7717/peerj-cs.163
https://doi.org/10.7717/peerj-cs.163

[BCK+22] M. Barker, N. P. Chue Hong, D. S. Katz, A.-L. Lamprecht, C. Martinez-Ortiz,
F. Psomopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Hon-
eyman. Introducing the FAIR Principles for research software. Scientific Data
9(1):622, Oct. 2022.
doi:10.1038/s41597-022-01710-x

[BQSL22] J. de Bruin, K. Quach, C. Slewe, A.-L. Lamprecht. Template of Scan and revieW of
Open Research Data and Software. 2 2022.
https://github.com/UtrechtUniversity/SWORDS-template

[CDJ+24] W. zu Castell, D. Dransch, G. Juckeland, M. Meistring, B. Fritzsch, R. Gey,
B. Höpfner, M. Köhler, C. Meeßen, H. Mehrtens, F. Mühlbauer, S. Schindler,
T. Schnicke, R. Bertelmann. Towards a Quality Indicator for Research Data pub-
lications and Research Software publications – A vision from the Helmholtz Asso-
ciation. 2024.
https://arxiv.org/abs/2401.08804

[CWR+22] J. Carver, N. Weber, K. Ram, S. Gesing, D. Katz. A survey of the state of the
practice for research software in the United States. PeerJ Computer Science 8, 2022.
Publisher Copyright: © Copyright 2022 Carver et al.
doi:10.7717/peerj-cs.963

[DBM+24] Deekshitha, R. Bakhshi, J. Maassen, C. M. Ortiz, R. van Nieuwpoort, S. Jansen.
RSMM: A Framework to Assess Maturity of Research Software Project. 2024.
https://arxiv.org/abs/2406.01788

[HKB+22] N. P. C. Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. E. Pso-
mopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman,
A. Struck, A. Lee, A. Loewe, B. v. Werkhoven, D. Garijo, E. Plomp, F. Genova,
H. Shanahan, M. Hellström, M. Sandström, M. Sinha, M. Kuzak, P. Herterich,
S. Islam, S.-A. Sansone, T. Pollard, U. D. Atmojo, A. Williams, A. Czerniak,
A. Niehues, A. C. Fouilloux, B. Desinghu, C. Goble, C. Richard, C. Gray,
C. Erdmann, D. Nüst, D. Tartarini, E. Ranguelova, H. Anzt, I. Todorov, J. McNally,
J. Burnett, J. Garrido-Sánchez, K. Belhajjame, L. Sesink, L. Hwang, M. R. Tovani-
Palone, M. D. Wilkinson, M. Servillat, M. Liffers, M. Fox, N. Miljković, N. Lynch,
P. M. Lavanchy, S. Gesing, S. Stevens, S. M. Cuesta, S. Peroni, S. Soiland-Reyes,
T. Bakker, T. Rabemanantsoa, V. Sochat, Y. Yehudi, F. Wg. FAIR Principles for
Research Software (FAIR4RS Principles). Mar. 2022.
doi:10.15497/RDA00065
https://www.research.manchester.ac.uk/portal/en/publications/
fair-principles-for-research-software-fair4rs-principles(751dfce3-56e5-441f-8e3f-8c1401e0a1e0)
.html

19 / 21

http://dx.doi.org/10.7717/peerj-cs.163
https://doi.org/10.7717/peerj-cs.163
http://dx.doi.org/10.1038/s41597-022-01710-x
https://github.com/UtrechtUniversity/SWORDS-template
https://arxiv.org/abs/2401.08804
http://dx.doi.org/10.7717/peerj-cs.963
https://arxiv.org/abs/2406.01788
http://dx.doi.org/10.15497/RDA00065
https://www.research.manchester.ac.uk/portal/en/publications/fair-principles-for-research-software-fair4rs-principles(751dfce3-56e5-441f-8e3f-8c1401e0a1e0).html
https://www.research.manchester.ac.uk/portal/en/publications/fair-principles-for-research-software-fair4rs-principles(751dfce3-56e5-441f-8e3f-8c1401e0a1e0).html
https://www.research.manchester.ac.uk/portal/en/publications/fair-principles-for-research-software-fair4rs-principles(751dfce3-56e5-441f-8e3f-8c1401e0a1e0).html

Assessing Potsdam Researchers’ GitHub Repositories

[HMS+09] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, G. Wilson. How do
scientists develop and use scientific software? In 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering. Pp. 1–8. 2009.
doi:10.1109/SECSE.2009.5069155

[LGK+19] A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez, R. Arcila, E. Martin Del Pico,
V. Dominguez Del Angel, S. van de Sandt, J. Ison, P. A. Martinez, P. McQuilton,
A. Valencia, J. Harrow, F. Psomopoulos, J. L. Gelpi, N. Chue Hong, C. Goble,
S. Capella-Gutierrez. Towards FAIR principles for research software. Data Science
Preprint(Preprint):1–23, Nov. 2019.
doi:10.3233/DS-190026
https://content.iospress.com/articles/data-science/ds190026

[MMP+23] A. Malviya-Thakur, R. Milewicz, L. Paganini, A. S. I. Mahmoud, A. Mockus. Sci-
Cat: A Curated Dataset of Scientific Software Repositories. 2023.
https://arxiv.org/abs/2312.06382

[NC17] A. Nanthaamornphong, J. C. Carver. Test-Driven Development in scientific soft-
ware: a survey. Software Quality Journal 25(2):343–372, 2017.
doi:10.1007/s11219-015-9292-4
https://doi.org/10.1007/s11219-015-9292-4

[NFS10] L. Nguyen-Hoan, S. Flint, R. Sankaranarayana. A survey of scientific software de-
velopment. In Proceedings of the 2010 ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement. ESEM ’10. Association for Com-
puting Machinery, New York, NY, USA, 2010.
doi:10.1145/1852786.1852802
https://doi.org/10.1145/1852786.1852802

[PCCW93] M. Paulk, B. Curtis, M. Chrissis, C. Weber. Capability maturity model, version 1.1.
IEEE Software 10(4):18–27, July 1993.
doi:10.1109/52.219617
https://ieeexplore.ieee.org/document/219617

[PWD18] G. Pinto, I. Wiese, L. F. Dias. How do scientists develop scientific software? An
external replication. In 2018 IEEE 25th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). Pp. 582–591. 2018.
doi:10.1109/SANER.2018.8330263

[QCK14] J. Qin, K. Crowston, A. Kirkland. A Capability Maturity Model for Research Data
Management. School of Information Studies - Faculty Scholarship, Jan. 2014.
https://surface.syr.edu/istpub/184

[SGM21] R. Sanchez, B. A. Griffin, D. McCaffrey. Best Practices in Scientific Computing.
arXiv:2101.11857 [stat], Jan. 2021. arXiv: 2101.11857.
http://arxiv.org/abs/2101.11857

20 / 21

http://dx.doi.org/10.1109/SECSE.2009.5069155
http://dx.doi.org/10.3233/DS-190026
https://content.iospress.com/articles/data-science/ds190026
https://arxiv.org/abs/2312.06382
http://dx.doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.1007/s11219-015-9292-4
http://dx.doi.org/10.1145/1852786.1852802
https://doi.org/10.1145/1852786.1852802
http://dx.doi.org/10.1109/52.219617
https://ieeexplore.ieee.org/document/219617
http://dx.doi.org/10.1109/SANER.2018.8330263
https://surface.syr.edu/istpub/184
http://arxiv.org/abs/2101.11857

ECEASST

[SMH18] T. Schlauch, M. Meinel, C. Haupt. DLR Software Engineering Guidelines. Aug.
2018.
doi:10.5281/zenodo.1344612
https://doi.org/10.5281/zenodo.1344612

[SVT+22] J. H. Spaaks, S. Verhoeven, E. Tjong Kim Sang, F. Diblen, C. Martinez-Ortiz,
E. Etuk, M. Kuzak, B. van Werkhoven, A. Soares Siqueira, S. Saladi, A. Hold-
ing. howfairis. Sept. 2022. original-date: 2020-09-04T13:42:15Z.
https://github.com/fair-software/howfairis

[WAB+14] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. D.
Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White,
P. Wilson. Best Practices for Scientific Computing. PLOS Biology 12(1):e1001745,
July 2014. Publisher: Public Library of Science.
doi:10.1371/journal.pbio.1001745
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

[WBC+17] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, T. K. Teal. Good enough
practices in scientific computing. PLOS Computational Biology 13(6):e1005510,
June 2017. Publisher: Public Library of Science.
doi:10.1371/journal.pcbi.1005510
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510

21 / 21

http://dx.doi.org/10.5281/zenodo.1344612
https://doi.org/10.5281/zenodo.1344612
https://github.com/fair-software/howfairis
http://dx.doi.org/10.1371/journal.pbio.1001745
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pcbi.1005510
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510

	Introduction
	Related Work
	Method
	Collecting GitHub profiles
	Collecting GitHub repositories
	Research Repositories
	DLR Application Classes

	Collecting Variables for Analysis
	FAIR Score
	Software Documentation
	Software Development Practices

	Results
	FAIRness
	Software Documentation
	Software Development Practices

	Threats to Validity
	Conclusion

