Electronic Communications of the EASST

Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2009
(WowKiVS 2009)

Using WSDM and Web Service Ping for QoS based Web Service
Selection

Thomas Schoene, Friedbert Kaspar, Christoph Reich

12 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Using WSDM and Web Service Ping for QoS based Web Service
Selection

Thomas Schoene', Friedbert Kaspar', Christoph Reich!

Hochschule Furtwangen University'

Abstract: By using the standard Web Service Distributed Management (WSDM)
[OASO8c] and Web Service Ping, we introduce a lightweight solution to the Web
Service QoS problem. The Management of Web Services (MOWS) part of WSDM
is used to publish Web Service’s QoS parameters. Management using Web Services
(MUWS), the second part of WSDM, is used to monitor IT resources’ QoS. Exam-
ples are server’s QoS, application server’s QoS and network’s QoS. Web Service
Ping can be used as a simple diagnostic tool for Web Service’s latency and Web
Service’s availability across organizational boundaries. Therefore, we propose to
introduce a standardized Web Service Ping operation into all Web Services. All
QoS data retrieved by using MOWS, MUWS and Web Service Ping, can be used
for Web Service selection. We introduced a new Web Service selection architec-
ture, the Delegation Web Service as selector. Compared to Web Service Broker as
selector, consumer as selector and QoS enhanced UDDI as selector, the Delegation
Web Service as selector offers a better solution for implementing Web Service load
balancing and can increase the security of and for Web Services.

Keywords: SOA, Web Services, QoS, Web Service Ping, WSDM, MUWS, MOWS,
Web Service Routing, Web Service selection, Delegation Web Service as selector

1 Introduction

The growing demand to increase the flexibility of the IT infrastructure to support rapidly evolv-
ing business needs, has led to a rising interest in Service-Oriented Architectures (SOA). Web
Services are the dominant implementation technology for SOAs. More than 80 accepted Web
Service standards exist [inn08]. They support a wide range of functional and nonfunctional re-
quirements. To describe, monitor and manage Quality of Service (QoS) parameters, numerous
approaches exist [Lee08, MRD08, GNCWO03, TGRS04, BSR"07b]. Our approach is to use the
OASIS WSDM (Web Service Distributed Management) standard [OAS08c] and Web Service
Ping (see Section 5) to solve the Web Service QoS problem. WSDM uses WSRF [OAS08d] and
WSN [OASO08b]. WSREF is used to model and access stateful resources. A stateful resource may
be a Web Service or any other IT resource. WSN is used for notifications and events. WSDM in-
cludes Management using Web Services (MUWS) and Management of Web Services (MOWS).
Web Service Ping can be used to measure the RTT (Round Trip Time) of a Web Service and to
determine the availability of a Web Service.

The article is organized as follows. First a short overview of related work is given (see Section
2). Then we discuss QoS parameters and how to choose appropriate measurement points for

1/12 Volume 17 (2009)

Using WSDM and Web Service Ping for QoS based Web Service Selection E}

these QoS parameters (Section 3). In Section 4, the capability of MOWS and MUWS to monitor
QoS is discussed. Then we explain the idea of using Web Service Ping as an easy Web Service
diagnostic tool by adding a standardized Web Service Ping operation to all Web Services (see
Section 5). Implementation related considerations, of how Web Service frameworks do and can
support WSDM and Web Service Ping follow in Section 6. Three architectures for Web Service
selection have been identified and a new architecture for Web Service selection will be intro-
duced (see Section 7). The new Delegation Web Service as selector approach will be introduced
and compared to the three other architectures.

2 Related Work

Service Level Agreements (SLA) between consumers and Web Services, define a QoS agree-
ment between consumers and Web Services. SLA can also be used to specify actions, taken
in case of SLA violations. Several approaches to solve the QoS problem using SLA exist.
[BSR"07b, BGRO5] introduces WSQoSX, a framework for monitoring Web Service’s QoS and
ensuring a high SLA (Service Level Agreements) compliance by dynamic Web Service reselec-
tion in case of SLA violations. [SKOS8] introduces a decentralized SLM (Service Level Man-
agement) approach for management of SOAs using SLA. [GNCWO03] introduces QUEST which
uses SLA to dynamically compose Web Services, finding the best composition in means of QoS.
In our approach, the QoS parameter value when requested by the consumer, can be understand
as Service Level Agreement. If real SLA is required, our approach can be extended by including
standards such as WSLA [IBMO08]. [TGRS04] introduces WS QoS (Web Service QoS), a frame-
work for QoS based selection and monitoring of Web Services. It advocates the use of a Web
Service Broker for QoS based Web Service selection. [DAOS] introduces a way of measuring
Web Service provider’s QoS and advocates the use of the Web Service Broker as selector ar-
chitecture. [Lee08] introduces WSQMS (Web Service quality Management System) to measure
QoS of Web Services. It further introduces WSQDL (Web Service Quality Description Lan-
guage). It advocates the use of the QoS enhanced UDDI for Web Service selection. [JBF07]
introduces a concept where consumers publish and retrieve QoS experience via a reputation
mechanism. [NKO06] concentrates on solving QoS violations in composed Web Services, using
rediscovery and reselection. In comparison to all these works which introduce new frameworks,
we do not introduce a new framework. This approach is more lightweight, yet Web Services have
to comply with the MOWS (Management of Web Services) standard and include a standardized
Web Service Ping operation. [Ran03] advocates the QoS enhanced UDDI architecture and dis-
cusses which QoS Parameters can be applied to Web Services. [HKKKO06] introduces a Web
Service Delegation model for providing safety and privacy. This work shows how a Delegation
Web Service increases the security of and for Web Services.

3 QoS Parameters for Web Services

There are many QoS parameters which can be applied to Web Services [Ran03]. Different no-
tions of quality exist, ranging from basic metrics like response time or availability to very sophis-
ticated features like security or atomic transaction. As noted in [Lud03], some QoS parameters

Proc. WowKiVS 2009 2/12

EE ECEASST

(like performance) can be measured at different points.

Server

@® Possible Point of Measurement

Web Service Framework

Figure 1: Points of Measurements

Depending on the QoS parameter, there can be up to six measurement points: at the Web Ser-
vice, at the Web Service framework, at the application server, at the server, on the network (for
example at an intermediate SOAP node or at a Delegation Web Service) or at the consumer. This
yields multiple inconsistent measurement values. Different parties (for example, the consumer
and the Web Service provider) can add an offset or a value computed from other QoS parameters,
to control each other’s measurement values. In this paper we focus on the measurement point at
the Web Service and the measurement point at the consumer. Below you can find examples for
these two measurement points. The MOWS (Management of Web Services) parameter LastRe-
sponseTime is an example of a QoS parameter measured at the Web Service. The service time
measured using the Web Service Ping operation is an example of a QoS parameter measured
at the consumer. For measuring QoS on the network, the Web Service Delegation Routing ar-
chitecture as described below or SOAP nodes which add a time stamp to every SOAP message
that passes them can be used. For measuring at the application server, the application server has
to be extended (e.g. using the Aspect-Oriented Programming (AOP) paradigm). For measuring
at the Web Service framework, the Web Service framework has to be extended (e.g. using the
Aspect-oriented programming (AOP) paradigm). For measuring at the server, a proxy program
which logs incoming and outgoing SOAP messages has to be used.

4 WSDM for monitoring QoS

WSDM (Web Service Distributed Management) is divided into the two parts: MOWS (Man-
agement of Web Services) and MUWS (Management using Web Services) [OAS08c]. MOWS
(Management of Web Services) [OAS08c] was created for managing Web Service endpoints.
Values from its WSRF properties part, that can be used as QoS parameters or for computing QoS
parameters are: NumberOfRequests, NumberOfFailedRequests, NumberOfSuccessfulRequests,
ServiceTime, MaxResponseTime and LastResponseTime. LastResponseTime can be used as
a QoS parameter directly. ServiceTime divided by NumberOfRequests will compute the Av-
erageResponseTime. Unfortunately, MOWS has few QoS parameters, but since the MOWS
standard is extensible, it is possible to add more QoS parameters to the WSRF properties part of
MOWS if required. There needs to be a discussion on which QoS parameters to add and how to
model them. QoS parameters which are computed using already existing properties can also be
added to relieve consumers. MUWS (Management using Web Services) [OASO8c] can be used

3/12 Volume 17 (2009)

Using WSDM and Web Service Ping for QoS based Web Service Selection E}

to manage and monitor IT resources and their QoS parameters. MUWS can be used to make
cross-layer management data available within the Web Service layer. Cross-layer data can be
used for early detection of bad QoS or QoS violations [BSR"07a]. MUWS can function as an
interface to SNMP (Simple Network Management Protocol) to monitor the CPU load of a server
hosting Web Services.

S Web Service Ping for QoS

Ping is a well known simple tool to check the availability of a resource under a particular IP
address, the round trip time (RTT) of an IP based request-reply message and to create well
defined loads to test IP networks. Ping represents several interesting features which may serve as
an inspiration for a simple diagnostic tool for Web Services. To check the availability of a Web
Service by a Web Service Ping operation without causing side effects may be useful. Measuring
the RTT of a simple Web Service Ping operation, can give valuable information for choosing
a suitable instance of a needed Web Service. A Ping concept for Web Services, may support
the management of Web Services across organizational boundaries. The idea of a Web Service
Ping has been used for performance measurements by [JecO8]. We want to develop these ideas
further: We propose to introduce this nonfunctional feature in all Web Service interfaces to offer
a simple diagnostic tool, which works across organizational boundaries if standardized. As a
basis for this purpose, we propose a declaration of the Web Service Ping in WSDL [SchOS].
Clearly this part of the interface should be generated automatically by setting an appropriate flag
of a WSDLtoTargetLanguage generator or by a suitable annotation in the code, which is intended
to be wrapped into the Web Service interface. We investigated the language binding to Java with
Apache Muse [FouO8] by developing a WS-Ping prototype.
Our proposition of the XML Schema for a Web Service Ping operation is as follows. The XML
Schema file as well as WSDL samples can be found under [Sch08].
<xsd:element name="WSPing">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ConsumerRequestTime" type="xsd:dateTime" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="WSPingResponse" type="xsd:dateTime" />

Listing 1: Web Service Ping Operation

Our suggestion includes the following: An element of the XML Schema type dateTime as a
request parameter and an element of the XML Schema type dateTime in the response message.
It is envisioned to measure three times: the time at the consumer when it sends the request
(ConsumerRequestTime), the time at the Web Service (WebServiceTime) and the time at the
consumer when it receives the response(ConsumerResponseReceivedTime). The consumer can
subtract ConsumerRequestTime from ConsumerResponseReceivedTime to get the service time
of the Web Service Ping operation. This service time can be used, for example, for Web Service
selection as explained below. The ConsumerRequestTime and the Web ServiceTime can be
logged by the Web Service. The consumer can log the WebServiceTime, ConsumerRequestTime

Proc. WowKiVS 2009 4/12

Eg ECEASST

and ConsumerResponseReceivedTime. This log information can be used for statistics, detection
of QoS shifts and detection of manipulations.

6 Web Service frameworks and QoS

There are different Web Service frameworks, but unfortunately, there is no Web Service frame-
work which implements MOWS or Web Service Ping. Apache Muse [Fou08] implements parts
of MUWS and therewith parts of WSRF and WSN. Therefore, it is comparatively easy to im-
plement MOWS conform Web Services with Apache Muse. We advocate the implementation
of WSDM and Web Service Ping in all major Web Service frameworks. This would give all
consumers, Web Service search engines and Web Service selectors the chance to compare Web
Services based on their QoS. There are two ways how MOWS and Web Service Ping can be
implemented within Web Service frameworks. It can be implemented within the actual Web Ser-
vice frameworks deployment as central instance, managing MOWS parameters and Web Service
Ping requests for all deployed Web Services. This would move the measurement point of MOWS
parameters from the Web Service to the Web Service framework. The second approach is to put
the MOWS and Web Service Ping functionalities into the Web Service. This means the WSDL-
toTargetLanguage generator should add standard Web Service Ping and MOWS functionalities
to the created class. If the code first approach is used, a special class containing MOWS and
Web Service Ping functionalities needs to be extended or suitable annotations in the code have
to be made. The first approach has the advantage that all already existing Web Services within
the Web Service framework won’t have to be changed. The second approach has the advantage
that the standard implementation of the MOWS functionalities can be overwritten easily.

7 QoS based Web Service selection architectures

Four Web Service selection architectures have been identified. The first and easiest one is the
consumer as selector architecture. Then there are two approaches which have been introduced in
multiple papers: the QoS based Web Service Broker as selector[TGRS04, DA0O8] and the QoS
enhanced UDDI as selector[Ran03, Lee0O8]. Then we have a new approach, the QoS based Del-
egation Web Service as selector. The architectures are illustrated based on a very easy selection
example. This example includes two Web Services, where the first Web Service has a better QoS
and will be chosen. In the illustrated sample, all MOWS functionalities are within the Web Ser-
vices (inband). They could as well be outband (additional MOWS providing Web Services). Web
Services can be discovered using Web Service discovery. Possibilities to discover Web Services
include: UDDI (Universal Description Discovery & Integration) [OAS08a], Service Domain
Inventories [Erl08], Enterprise Web Service Inventories [Erl08], Service Groups [OAS08d], re-
lationships between Web Services, Web Service Aggregation and Web Service Announcements.
The Web Service discovery process is illustrated by a simple arrow within the figures. The sam-
ple also includes MUWS Web Services that are used to retrieve IT resources’ QoS parameters
important to the Web Services’ QoS such as the Web Services’ server’s CPU load. The architec-
tures advantages and disadvantages will be discussed, making it easier to choose one based on
requirements and design decisions.

5/12 Volume 17 (2009)

Using WSDM and Web Service Ping for QoS based Web Service Selection Eﬁ

7.1 Consumer as selector

>
non functional request/response
»

functional request/response
Web Service Discovery % Web Service 1
5 .

MUWS
Web Service |

<3
3
Consumer
»
-

MUWS
Web Service “

<%

(4)

W ice 2
Steps (3) and (4) are optional. eb Service

Figure 2: Consumer as selector

The first approach is to put the selection mechanism into the consumer. The consumer can be
the actual consumer or a Web Service using further Web Services.

Advantages of consumer as selector:

e Does not introduce single point of failure.
e Does not introduce bottleneck.

e Does not introduce further central Web Services (decreases the total number of Services
and the complexity of the architecture).

e Consumer controls selection and discovery (does not depend on third parties interest).

e Consumer can control stated QoS values.
Disadvantages of consumer as selector:

e Increases the complexity of the consumer.

o If new selection algorithms should be introduced or old selection algorithms should be
updated, all consumers have to be updated.

e Consumer gains inside knowledge of the Web Services and the Web Services’ network
structure.

e Every consumer makes its own decision, therefore, this architecture cannot be used for
Web Service load balancing.

e No centralized disqualification of unreliable Web Service providers.

Proc. WowKiVS 2009 6/12

E

ECEASST

7.2 Web Service Broker as selector

non functional requesllresponse=
functional request/response Web Service 1
7 Iy . A
@ e
_=7| muws
‘ﬁ/ Web Service
a :
c *| Web Service | (4)
onsumer Broker
® \
MUWS
3 \QA Web Service
@) 2
Y \i
o Steps {4) and (5) are
Get EPR requestiresponse = Web Service 2 optional.
Web Service discovery

Figure 3: Web Service Broker as selector

Another approach is to put the selection functionality into a Web Service Broker, as discussed in
[TGRS04, DAOS8]. The consumer will send a request (containing the wished functionality, spe-
cial selection preferences and QoS requirements) to the Web Service Broker. The Web Service
Broker will respond with the address of the best fitting Web Service. The consumer can access

the Web Service directly, using the provided address.

Advantages of Broker as selector:

e Consumers are eased and their complexity is reduced.

e Web Service Broker can reuse selection decisions for multiple consumers.

e Can be used for Web Service load balancing to a certain degree.

Disadvantages of Broker as selector:
e Introduces Single point of failure.

e Consumer still gains knowledge on Web Services.

e Consumer loses control over selection decisions and Web Service discovery.

e Web Service Broker can become a bottleneck.

Central introduction of new selection algorithms and update of selection algorithms.

Central disqualification of unreliable Web Services and Web Service providers is possible.

7/12

Volume 17 (2009)

Using WSDM and Web Service Ping for QoS based Web Service Selection

i

7.3 QoS enhanced UDDI as selector

-
non functional request/response
>

functional request/response

A

Web Service 1

(1)
\

Consumer

(&)

A

QoS enhanced

uDDI

A
M

Get WSA request/response =

»

Publish Web Service

Web Service 2

Figure 4: QoS enhanced UDDI as selector

Another approach is the QoS enhanced UDDI registry as discussed in [Ran03, Lee08]. It is sim-
ilar to the Web Service Broker architecture, but the Web Service Broker is replaced with a QoS
enhanced UDDI registry. Web Services have to publish themselves to the UDDI. Web Services
need to provide their QoS parameters, when publishing themselves. Web Services also have to
update their QoS parameters. The consumer can request a Web Service sending wished function-
ality, QoS requirements and QoS preferences to the QoS enhanced UDDI. The response will be
the address of the best fitting Web Service. The consumer can control whether the Web Service
really keeps its QoS promises and publish the results to the UDDI.

Advantages of QoS enhanced UDDI as selector:

e Central introduction of new selection algorithms and update of selection algorithms.

e Consumer are eased and their complexity is reduced.

Existing UDDI registries can be used, by extending them with QoS.

QoS enhanced UDDI can reuse selection decisions for multiple consumers.

e Can be used for Web Service load balancing to a certain degree.

Disadvantages of QoS enhanced UDDI as selector:

e Consumer loses control to a certain degree.

Central disqualification of unreliable Web Services and Web Service providers is possible.

Proc. WowKiVS 2009

8/12

Eg ECEASST

e MUWS won’t be used, as keeping track of all the MUWS Web Services including their
QoS parameters and their assignment to Web Services would overload the UDDI.

UDDI needs frequent updates.

UDDI can contain non-existing Web Services as well as wrong and inconsistent QoS val-
ues.

UDDI registries can be manipulated by consumers and Web Service providers.

o Consumer still gains knowledge on Web Services.

7.4 Delegation Web Service as selector

non functional request/response
functional request/response Web Service 1
Web Service discovery >
A A(3) A
(6)
Y vy @
/ MUWS
‘E)/ Web Service
(U
c Delegation | (4)
CLECLIC Web Service
)
‘$ MUWS
7y \ Web Service
@ @
Yy
4 ional.
Steps (4) and (5) are optional Web Service 2

Figure 5: Delegation Web Service as selector

A new approach is the Delegation Web Service as selector architecture. There should be one
Delegation Web Service for each Web Service type, as this simplifies the architecture as well
as the Delegation Web Service’s interface. However, one Delegation Web Service can also be
used for multiple Web Service types. The Delegation Web Service does not implement any func-
tional parts. It delegates functional request to corresponding Web Services. The Delegation Web
Service will consume functional as well as nonfunctional parts from used Web Services. Non-
functional parts will include MOWS and Web Service Ping, as well as MUWS from multiple
MUWS Web Services. The Delegation Web Service will decide which Web Service it delegates
to. The decision is based on nonfunctional QoS parameters, consumer QoS requirements and
consumer preferences.

Advantages of Delegation Web Service as selector:

9/12 Volume 17 (2009)

Using WSDM and Web Service Ping for QoS based Web Service Selection E}

Web Services and network structures are hidden from consumers.

e Delegation Web Service can reuse selection decisions for multiple consumers.
e Delegation Web Service is predestinated to implement Web Service load balancing.
o Central introduction of new selection algorithms and update of selection algorithms.

e Can be combined with the Web Service Broker as selector approach (Delegation Web
Service can delegate the selection decision to the Web Service Broker).

e Request parameters can be checked, wrong request can be discovered and a SOAP Fault
can be send directly. This increases Web Services’ security.

Disadvantages of Delegation Web Service as selector:
e Introduces single point of failure.
e Delegation Web Service can become a bottleneck, as it processes all functional requests.

e Consumer totally loses control over selection decision and nearly every possible control-
ling.

8 Conclusion

QoS based Web Service selection is an important research area. Web Service selection can in-
crease performance, reduce costs and positively influence important QoS parameters. A uniform,
consistent, lightweight and standardized solution for mining QoS parameters should be aspired.
This paper showed how to use MOWS, MUWS and Web Service Ping for this task. As there is
a wide range of QoS parameters, MOWS has to be extended with further QoS parameters. The
decision should always be based on QoS parameters important to the specific consumer . Web
Service Ping should be implemented as a simple and uniform Web Service Ping operation. Dif-
ferent Web Service selection architectures have been discussed. The newly presented Delegation
Web Service as selector architecture, hides the Web Services and is predestinated to implement
Web Service load balancing. The architectures consumer as selector, Web Service Broker as
selector and Delegation Web Service as selector have been implemented according to the illus-
trations using Apache Muse [FouO8]. All samples can be found under [Sch08]. Further and
upcoming work includes the implementation of the Web Service selection samples in other Web
Service frameworks, implementation of bigger samples, measuring and comparing the perfor-
mance of different Web Service selector architectures in multiple scenarios and the investigation
of different selection algorithms.

Acknowledgements: Special thanks to Annabelle Lee and Nicolas Repp for great support and
reviews.

Proc. WowKiVS 2009 10/12

E

ECEASST

Bibliography

[BGROS]

[BSRT07a]

[BSRT07b]

R. Berbner, T. Grollius, N. Repp. An approach for the Management of Service-
oriented Architecture (SoA) based Application Systems. Enterprise Modelling and
Information Systems Architectures, Oct. 2005.

R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz. Dynamic Replan-

ning of Web Service Workflows. Digital EcoSystems and Technologies Conference.,
pp. 211-216, Feb. 2007.

R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz. Service-Oriented
Computing ICSOC 2007. Section WSQoSX A QoS Architecture for Web Service
Workflows, pp. 623-624. Springer, Berlin / Heidelberg, Aug. 2007.

[DAOS] D. A. DMello, V. S. Ananthanarayana. Quality Driven Web Service Selection and
Ranking. In Proceedings of the Fifth International Conference on Information Tech-
nology: New Generations. Volume 5, pp. 1175-1176. Chicago, Apr. 2008.

[Erl08] T. Erl. SOA Patterns. Technical report, Oct. 2008.
http://www.soapatterns.org/

[Fou08] A. S. Foundation. Apache Muse. Technical report, Oct. 2008.
http://ws.apache.org/muse/

[GNCWO03] X. Gu, K. Nahrstedt, R. N. Chang, C. Ward. QoS-Assured Service Composition
in Managed Service Overlay Networks. In International Conference on Distributed
Computing Systems. Volume 23, pp. 194-201. May 2003.

[HKKKO06] H. S. Hwang, H. J. Ko, K. I. Kim, U. M. Kim. Agent-Based Delegation Model for
the Secure Web Service in Ubiquitous Computing Environments. In Proceedings of
the 2006 International Conference on Hybrid Information Technology. Volume 1,
pp- 51-57. Nov. 2006.

[IBMO8] IBM. Web Service Level Agreements (WSLA) Project. Oct. 2008.
http://www.research.ibm.com/wsla/

[innO8] innoQ. Web Service Standards Overview. Oct. 2008.
http://www.innoq.com/soa/ws-standards/poster/

[JBFO7] R. Jurca, W. Binder, B. Faltings. Reliable and Inexpensive QoS Monitoring in Ser-
vice Markets. ERCIM NEWS, 2007.

[JecO8] M. Jeckle. Ping for SOAP — SOA Ping. Oct. 2008.
http://www.jeckle.de/freeStuft/soaping/index.html

[LeeO8] Y. Lee. Quality Context Composition for Management of SOA Quality. 2008 IEEE
International Workshop on Semantic Computing and Applications, pp. 117-122,
Sept. 2008.

11/12 Volume 17 (2009)

http://www.soapatterns.org/
http://ws.apache.org/muse/
http://www.research.ibm.com/wsla/
http://www.innoq.com/soa/ws-standards/poster/
http://www.jeckle.de/freeStuff/soaping/index.html

Using WSDM and Web Service Ping for QoS based Web Service Selection Eﬁ

[Lud03]

[MRDO08]

[NKO06]

[OASO8a]

[OASO8b]

[OASO08c]

[OASO8d]

[Ran03]

[Sch08]

[SKO8]

[TGRS04]

H. Ludwig. Web services QoS: external SLAs and internal policies or: how do we
deliver what we promise? Fourth International Conference on Web Information
Systems Engineering Workshops. 4:115-120, Dec. 2003.

O. Moser, F. Rosenberg, S. Dustdar. Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In Proceeding of the 17th international conference on World
Wide Web. Pp. 815-824. Beijing, Apr. 2008.

X. T.Nguyen, R. Kowalczyk. An agent based QoS conflict mediation framework for
Web Services Compositions. In Proceedings of the IEEE/WIC/ACM international
conference on Intelligent Agent Technology. Pp. 522-528. Dec. 2006.

OASIS. Universal Description, Discovery and Integration (UDDI). Oct. 2008.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

OASIS. Web Service Notification (WSN). Oct. 2008.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

OASIS. Web Services Distributed Management (WSDM). Oct. 2008.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

OASIS. Web Services Resource Framework (WSRF). Oct. 2008.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

S. Ran. A Model for Web Services Discovery With QoS. ACM SIGecom Exchanges
4(1):1-10, 2003.

T. Schoene. Download material. Oct. 2008.
http://www.kuruk.de/index.php?1d=42&L=0

M. Schmid, R. Kroeger. Distributed Applications and Interoperable Systems. Sec-
tion Decentralised QoS-Management in Service Oriented Architectures, pp. 44-57.
Springer, Berlin / Heidelberg, May 2008.

M. Tian, A. Gramm, H. Ritter, J. Schiller. Efficient Selection and Monitoring of
QoS-aware Web services with the WS-QoS Framework. In Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web Intelligence. Pp. 152—-158. Sept.
2004.

Proc. WowKiVS 2009 12/12

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.kuruk.de/index.php?id=42&L=0

	Introduction
	Related Work
	QoS Parameters for Web Services
	WSDM for monitoring QoS
	Web Service Ping for QoS
	Web Service frameworks and QoS
	QoS based Web Service selection architectures
	Consumer as selector
	Web Service Broker as selector
	QoS enhanced UDDI as selector
	Delegation Web Service as selector

	Conclusion

