Electronic Communications of the EASST

Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2009

(WowKiVS 2009)

Flowstream Architectures

Adam Greenhalgh, Mark Handley, Mickaél Hoerdt, Felipedijuiaurent Mathy and Panagiotis
Papadimitriou

5 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Flowstream Architectures

Adam Greenhalght, Mark Handley 2, Mickaél Hoerdt2, Felipe Huici*, Laurent
Mathy® and Panagiotis Papadimitriol

3 m.hoerdt@lancaster.ac.gk.mathy@lancaster.ac. $p.papadimitriou@lancaster.ac.uk
Computing Dept., Lancaster University, UK

1 a.greenhalgh@cs.ucl.ac.gkn.handley@cs.ucl.ac.uk
Dept. of Computer Science, University College London, UK

4 felipe.huici@nw.neclab.eu
NEC Europe, Heidelberg, Germany

Abstract: The Internet has seen a proliferation of specialized mmtikedevices

that carry out crucial network functionality such as loadhhaing, packet inspec-
tion or intrusion detection, amongst others. Traditiondligh performance network
devices have been built on custom multi-core, specializethary hierarchies, ar-
chitectures which are well suited to packet processing.eRiy¢ commodity PC

hardware has experienced a move to multiple multi-coresgtap well as the rou-
tine inclusion of multiple memory hierarchies in the sol@dINUMA architectures.

While a PC architecture is obviously not specifically taggeto network applica-
tions, it nevertheless provides high performance cheadplythermore, a few com-
modity switch technologies have recently emerged offettiregpossibility to control

the switching of flows in a rather fine grained manner. Putttugrethese new tech-
nologies offer a new network commodity platform enablingvrfeow processing

and forwarding at an unprecedented flexibility and low cost.

Keywords: virtualization, router, platform architecture, commediardware

1 Introduction

The Internet has seen a proliferation of specialized mimtitedevices that carry out crucial
network functionality such as load balancing, packet inpe or intrusion detection, amongst
others. Atthe same time, we experience a trend towards thencdlitization of hardware, which
allows for cheap and extremely capable switching and psingsomponents (e.g., multi-core
chips). A few commodity switch technologies have recentiyegged offering the possibility
to control the switching of flows in a rather fine grained marfié Put together, these new
technologies render commodity hardware a viable platfanflow processing and forwarding
at an unprecedented flexibility and low cost. In this contex¢ propose a generic network
control, forwarding and flow processing platform built frasammodity switch hardware and
a small cluster of servers. Such a platform is inexpensieey flexible, scalable, and failure
tolerant.

1/5 Volume 17 (2009)

mailto:m.hoerdt@lancaster.ac.uk
mailto:l.mathy@lancaster.ac.uk
mailto:p.papadimitriou@lancaster.ac.uk
mailto:a.greenhalgh@cs.ucl.ac.uk
mailto:m.handley@cs.ucl.ac.uk
mailto:felipe.huici@nw.neclab.eu

Flowstream Architectures @

2 Flowstream Architectures

We call such platforms “Flowstream Architectures”, for seas that should be clear shortly.
Platforms built according to the Flowstream architectuare be characterized by the following
properties:

e The core of the platform consists of an ethernet switch cardig) to route flows. A flow
is defined in the OpenFlow sense, as packets that match alfyos8dcarded) tuple of
source and destination addresses and ports.

e Streams of data from these flows are then routed to one of agnushbttached commodity
server boxes for additional processing, before being fatac on to the final destination.
The server boxes can also act as traffic sinks.

e Software running on the server boxes can be composed taderpvocessing pipelines of
modules.

e These modules are virtualized, in the sense that they caroledbetween the servers to
balance load and provide robust service in the presenceluiefs

e The switch and servers are managed as a single platform frerpdint of view of the
operators.

2.1 Description of a Platform

The platform consists of a flow-based switch, the serverscfwive callmodule hostso distin-

guish them from traditional servers), and a controller gp&e 1). Each host runs a number of

processing moduleshere all of the actual flow processing takes place excepidsic forward-

ing which can be done by the switch. Further, hosts contaipeaial module called aontrol

module which receives commands from the platform’s controllerdmove, install or migrate

modules, as well as to provide monitoring information alibethost’s load and performance.
There are three main technologies available to us for imefgimg a module:

e A virtual machine running its own OS and module application.
e A process running on a virtual machine shared with other riesdu

e A set of kernel forwarding elements instantiated in the &kaf the device driver domain
on one of the module hosts.

The first of these options is the most general and providesb#se inter-module isolation,
whereas the third will provide the highest performance faffic that needs to traverse sev-
eral modules in the same module host. We envisage diffeqgpitcations will use different
implementation options, often on the same Flowstreamaptatf

For composing kernel forwarding elements, the Click modrdater §] provides a suitable
set of building blocks. For example, a module can be compotagredefined set of Click ele-
ments, and under the control of the operator, cascades lofisadules can be plumbed together
at run-time.

Proc. WowKiVS 2009 215

ﬁ ECEASST

switch

processing module
processing module
processing module

control module

processing module
processing module
processing module

control module

| processing module
flow _processing module 8 Module
table processing module [l Host C

control module

Module
Host A

Module
Host B

NETWORK
I

USER INTERFACE

Figure 1: Overview of a Flowstream platform.

A Flowstream platform’s second main component is the Openglwitch [1], providing the
basic connectivity between module hosts and the networkddiition to this, the switch contains
a flow table which is configured by the controller at runtimbowing different flows to be
directed to any of the ports on the switch. It is worth poigtiout that while figurel shows
a single switch, it would be certainly possible to scale tlaferm’s port density by including
additional switches.

The final component is the controller. Essentially, thishis brains of the platform and also
its user interface to the outside world. When the operatdtema request (for instance, running
an IDS on flows to a particular web server), the controllerifiey choosing the module host
or hosts to install the processing module(s) on. Such aidact®uld be based on the hosts’
current load, information that the controller retrievesigdically from the control modules.
Having selected a host, the controller then instructs timéroabmodule to install the requested
processing module. Once this is done, the controller cord@ggthe switch’s flow table so that
the corresponding flows are directed to the right processiodule.

With all of these components in place, a Flowstream architecprovides a powerful plat-
form for flow processing. The fact that it is built upon comritpd/et, as shown in previous
work [2, 3], high performance hardware should result in significargt aavings. In addition,
a Flowstream setup can be easily expanded and contractedndyaily by adding or removing
module hosts, something that cannot be easily accomplishetbnventional routers or mid-
dleboxes. Further, when required, the isolation providgdiktualized module hosts allows

3/5 Volume 17 (2009)

Flowstream Architectures @

Module
Host A

Module
Host B

Module
Host C

(a) Parallel processing (load-balancing) scenario.

/ switch

Module
Host A

Module
Host B

Module
Host C

(b) Serial processing scenario.

o ~
|

Module
Host A

(c) Flow splitting scenario.
Figure 2: Basic platform usage scenarios.

several different flow processing operations to be perfdrsimultaneously while minimizing
negative interactions. The controller can also migrate uteslas required to ensure that a pro-
cessing task does not significantly degrade the performahothers. Last but not least, using
general-purpose processors and allowing operators w@llittstir own flow processing modules
yields great flexibility. So long as modules have access tbdedined flow APIs, a Flowstream
platform can accommodate a wide range of existing and euenefnetwork applications. Itis
precisely the usage of the platform that we discuss next.

2.2 Usage Scenarios

In the most basic case, the operator places a request to atFdam platform’s controller asking
it to apply a certain processing module to a subset of thédtaéing forwarded. The controller
then chooses a module host with appropriate load levelsaitalls the module on it, also config-

Proc. WowKiVS 2009 4/5

@ ECEASST

uring the switch’s flow table. The flow then travels from thetstvto the module for processing,
before being sent back to the switch and then out onto theanktw

Beyond the simple case, there are two more interesting ssag&rios, depending on whether
modules act on flows in parallel or serially. In parallel @ssing (see figurg(a)), flows are load-
balanced, pushing different flows to different module hasiisprocessing each of them equally.
In serial processing or pipelining (see figuw)), the operations performed on flows are split
across several module hosts and done one at a time. Conobisaif serial and parallel are
certainly possible.

A more complex usage scenaridlisw splitting whereby a processing module is used to split
a subset of traffic from a flow aggregate to another module dahér processing (see figure
2(c)). As long as its capabilities are sufficient, the switch dan &e used to split traffic.

2.3 Module Migration

Flowstream architectures fit firmly into the trend of usingagis of cheap and potentially unreli-
able hardware, but providing robustness in software. Teigeosuch robustness, we need to be
able to migrate modules between hosts, both to manage cltalugid and to adapt to failures.
It is perhaps this ability to migrate processing functioesieen hardware while simultaneously
re-plumbing the switch’s flow table to match, that perhapst Bleistrates the flexibility of Flow-
stream architectures. This flexibility can even be used teepalown underused module hosts
during quiet hours to save on electricity costs.

3 Conclusions

We presented Flowstream, a new class of system architedioirén-network processing plat-
forms that has emerged from the confluence of the commaoiilitizaf switch and x86 server
hardware. Because they are inexpensive, very flexiblealsleabnd failure tolerant we believe
that such platforms can be used to implement the functignafithe middleboxes that are cur-
rently required for the Internet to operate, as well as gitures.

Bibliography
[1] Open Flow Switch Consortium. Open flow switdhitp://www.openflowswitch.org

[2] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Itte Felipe Huici, and Laurent
Mathy. Towards high performance virtual routers on comryodardware. InProceedings
of ACM CoNEXT 2008viadrid, Spain, December 2008.

[3] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Iitteand Laurent Mathy. Virtual
router project.http://nrg.cs.ucl.ac.uk/vrouter/

[4] Eddie Kohler, Robert Morris, Benjie Chen, John Jahnattid M. Frans Kasshoek. The click
modular routerACM Transaction on Computer Systerh8(3):263—-297, 2000.

5/5 Volume 17 (2009)

http://www.openflowswitch.org
http://nrg.cs.ucl.ac.uk/vrouter/

	Introduction
	Flowstream Architectures
	Description of a Platform
	Usage Scenarios
	Module Migration

	Conclusions

