
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

Lazy Merging:
From a Potential of Universes to a Universe of Potentials

Jonas Schürmann and Bernhard Steffen

24 pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

https://orcid.org/0000-0002-1587-0549
https://orcid.org/0000-0001-9619-1558
http://www.easst.org/eceasst/

ECEASST

Lazy Merging:
From a Potential of Universes to a Universe of Potentials

Jonas Schürmann and Bernhard Steffen

TU Dortmund University

Abstract: Current collaboration workflows force participants to resolve conflicts
eagerly, despite having insufficient knowledge and not being aware of their collabo-
rators’ intentions. This is a major reason for bad decisions because it can disregard
opinions within the team and cover up disagreements. In our concept of lazy merging
we propose to aggregate conflicts as variant potentials. Variant potentials preserve
concurrent changes and present the different options to the participants. They can be
further merged and edited without restrictions and behave robustly even in complex
collaboration scenarios. We use lattice theory to prove important properties and show
the correctness and robustness of the collaboration protocol. With lazy merging, con-
flicts can be resolved deliberately, when all opinions within the team were explored
and discussed. This facilitates alignment among team members and prepares them to
arrive at the best possible decision that considers the knowledge of the whole team.

Keywords: Collaboration Systems, Version Control, Software Merging, Conflict
Handling, Conflict Tolerance, Lattice Theory

1 Introduction

When teams collaborate, there is the need to synchronize, but there is also the need to work
concurrently and independent of each other. Collaboration systems fulfill both of these needs with
the concept of branching & merging. Branches create workspaces isolated from the current main
version in which participants can work concurrently without interruption. They are generally used
to carry out cohesive tasks, before they are merged back into the main version [BBR+12]. During
merging, conflicts may arise from concurrent edit operations. Handling these conflicts is a major
challenge in the implementation of collaboration systems [Men02].

Contemporary version control systems (VCSs, e.g., Git1) follow what we call an eager merging
strategy. All the conflicts that have been built up between branches must be resolved immediately
when branches are merged, by the participant who initiated the merge [CS14]. The participant
has to stop what they are currently doing and is faced with the difficult task of working out a
resolution on their own. To make things worse, conflict representations are often verbose and
inaccurate [Men02]. This “integration hell” [PSW11] is a common problem in branching &
merging workflows that contributes to the fact that VCSs are predominantly used by technical
experts.

To avoid these challenges, many popular applications abandon branches entirely and decide to
use simple live collaboration protocols instead. This approach was also chosen for the graphical

1 https://git-scm.com/

1 / 24 Volume 82 (2022)

https://orcid.org/0000-0002-1587-0549
https://orcid.org/0000-0001-9619-1558
https://git-scm.com/

Lazy Merging

modeling environment Cinco Cloud that is developed at our chair. Participants are required
to always work online in a single commonly shared workspace to minimize the possibility for
conflicts. If conflicts occur, they are arbitrarily resolved to avoid interrupting participants in
their work [ZNS19]. This improves usability and makes the systems accessible to non-experts.
However, it gravely restricts the way participants can operate as they can no longer work offline
or in isolation from others.

We propose the concept of lazy merging to overcome these problems. Instead of eagerly
resolving conflicts during merging or attempting to avoid them altogether, conflicts are regular
parts of the collaborative documents. When conflicts arise during merging, they are preserved
and aggregated in variant potentials, so that they can be explained to the user and shared with
other participants. Moreover, they can stay in the documents and do not block ongoing work. In
this way, we can retain usability in the presence of branching & merging, enable participants to
communicate conflicts effectively, and grant participants more freedom in their work.

Section 2 motivates the benefits of lazy merging with a real-world scenario. Then Section 3 dis-
cusses lazy merging and its advantages more generally. It describes how conflicts are represented
by variant potentials and how lazy merging supports version control. Section 4 provides a detailed
description and analysis of the lazy merging system, including a mathematical formalization
based on lattice theory. After that, Section 5 discusses how lazy merging changes the status quo
of collaboration systems. Section 6 compares lazy merging with relevant related work. Finally,
Section 7 lists many opportunities for future research before the paper is concluded in Section 8.

2 Real-World Scenario

The following exemplary collaboration scenario gives an initial idea of what is possible with
lazy merging. Figure 1 shows how Alice and Bob collaboratively design a flow chart for a
software quality assurance process. After they both add their own ideas, Alice can bring in Bobs
contribution and the conflicting changes are represented in the document. They both wanted to
add a node in the same place, so the edges split up and show the two variants. Alice does not
need to resolve this conflict immediately, she can keep on working and adds another node to the
flow graph. Then she directs her attention to the conflict. Because she is unsure about the best
resolution, she shares the conflict with Bob. Bob receives Alice’s conflicting version and works
out a resolution. Then Bob pushes the resolved version back to Alice, bringing both to the same
final state.

With lazy merging conflicts are a regular part of the collaborative document, so Alice and Bob
were able to work more freely compared to traditional eager merging systems. Alice was able to
bring in Bob’s changes without interrupting her work, postponing the conflict resolution to a later
time. When she started to work on the resolution, she could transfer the conflicting version over
the collaboration system to Bob. This brought them on the same page and Bob could work out a
resolution for both of them.

In an eager merging system, Alice would have had to immediately stop her work when she
brought in Bob’s contribution and resolve the conflict. To discuss the conflict with Bob, she would
have to explain it to him out-of-band, e.g., via telephone or screen sharing. And until Bob is
available to talk, she would have been blocked from working.

ISoLA DS 2022 2 / 24

ECEASST

Develop Code

Deploy Code

QA

Develop Code

Deploy Code

Develop Code

Deploy Code

Alice Bob

Develop Code

Deploy Code

✓ ✓

Develop Code

Deploy Code

Collect Contributions

Develop Code

Deploy Code

Develop Code

Deploy Code

✓ ✓

Keep on Working

Share C
onflict

Resolve Conflict

Develop Code

Deploy Code

Sh
ar

e
R

es
ol

ut
io

n

Unit Tests Integration Tests

✓✓

Unit Tests Integration Tests

Peer Review

✓ ✓

Unit Tests Integration Tests

✓✓

Peer Review

Unit Tests Integration Tests

✓✓

Peer Review

Integration Tests

Unit Tests

Peer Review

Integration Tests

Unit Tests

Figure 1: Lazy merging represents conflicts within the collaborative document.

3 / 24 Volume 82 (2022)

Lazy Merging

Because this coordination is so cumbersome, Alice could even be compelled to resolve the
conflict on her own. She would either pick an arbitrary order as she sees fit, or completely discard
Bob’s contribution. The result would be erroneous and disregard Bob’s opinion and expertise.

3 Lazy Merging

It is common to consider conflicts from concurrent editing as abnormal or exceptional. So there
is often the attempt to resolve conflicts as fast as possible. VCSs generally force participants to
resolve all conflicts before the merge process can be completed. And live collaboration systems
usually resolve conflicts arbitrarily (e.g., using last-write-wins semantics). These eager merging
strategies can uphold syntactic consistency at all times. But as shown by the previous example, it
restricts how participants work, causes interruptions, and does not support collaborative resolution.

3.1 Conflicts as Variant Potentials

Lazy merging is a fundamental shift in the perspective on conflicts in collaboration systems.
Conflicts are not problems that have to be resolved at the moment they come up. Every conflict is
a potential of possible variants, where each variant represents a meaningful opinion deserving
proper consideration.

For that reason, variant potentials are preserved and edited as regular elements of the document.
The document model is generalized to allow for variant potentials in all units. Merging becomes
lazy because the resolution of conflicts is deferred to a later time, and conflicts are resolved when
it is required or suitable.

Through this laziness, merging and conflict resolution become two completely independent
operations. Both are always available and safe to use, giving participants new freedoms in the
way they work. Merging collects all changes without data loss and is fully automated. Conflict
resolution discards variants, so it is made explicitly by participants, and it is recorded and applied
separately.

3.2 Lazy Version Control

Branching & merging is a key feature provided by version control systems. Branching workflows
have become popular in software development because they minimize the frequency of task
interruptions in concurrent development efforts [BBR+12]. This is critical for teams with more
than a few members because task interruptions diminish the productivity of participants [BBR+12].
The big challenge with branching & merging lies in the conflicts that arise when concurrent
development efforts are carried out in isolation. They have to be detected, represented, and
reconciled after branches are merged back together.

State-of-the-art VCSs employ eager merging strategies to resolve these conflicts, but that incurs
severe limitations. Participants are forced to resolve all conflicts they encounter immediately
during the merge before they can continue to work. But often they are unaware of the intentions
and perspectives of their team members. As a result, they find themselves unable to produce
satisfactory resolutions on their own [WFSW11]. Moreover, conflicts arise at points of disagree-

ISoLA DS 2022 4 / 24

ECEASST

ments, but if they are not preserved participants do not become aware of their differences in
opinion [WFSW11].

Lazy merging solves these problems with the introduction of variant potentials, which aggregate
and preserve all conflicts that occur, instead of forcing participants to resolve them immediately.
Because variant potentials are regular parts of the document, they can be distributed to all
participants. When conflicts are preserved this way, they can help uncover disagreements within
the team and guide the discussion to mediate the different opinions. The burden of making
a resolution decision does not lie with one unlucky participant. Everyone can take a look at
the aggregated variant potentials, creating awareness and understanding within the team. The
resolution can be worked out collaboratively with everyone who is affected by the conflicts.
This results in a more inclusive conflict resolution process, where all opinions are considered,
preventing the omission of important facts or ideas.

With lazy merging, participants can more flexibly work with contributions. They can always
bring in new contributions to work with, and postpone the resolution of conflicts. Variant potentials
can just stay in the documents without affecting work in other places, so there is no pressure to
resolve them. This allows participants to wait for additional information regarding the resolution
decision and prevents interruptions when new contributions are brought in.

Finally, lazy merging creates an auditable record of all conflicts that occurred and their reso-
lutions. This is different from current state-of-the-art VCSs where only the resolved version is
committed at the end of the merge process, and conflicts are completely ephemeral [WFSW11].
In contrast, lazy merging preserves all conflicts as variant potentials that are committed as a
proper new version and records resolution decisions separately. From this history, participants
can accurately understand what conflicts occurred and how they were resolved, for the complete
history of the project.

Naturally, participants must balance laziness and eagerness appropriately. While forced ea-
gerness can isolate participants, lead to premature decisions, and cause interruptions, too many
variant potentials accumulating in a document can make it incomprehensible.

3.3 Cell Segmentation

To ensure the reliable localization of changes, lazy merging applies a segmentation of uniquely
identifiable, persistent cells to the collaborative document. These cells represent the granularity at
which changes are captured and conflicts are detected. Whenever a cell is affected by the changes
of a participant, the new value of the cell is captured as a tiny snapshot. Cells determine what
concurrent changes are considered to be in conflict: Concurrent updates to the same cell are a
conflict, but concurrent updates to different cells are fine.

Figure 2a shows the segmentation of a graph model. The example uses a fine granularity, where
every property of the nodes and edges is captured in its own cell. Because each node and edge is
given a unique identifier, the cells can always be reliably distinguished from another. This allows
for precise merging and conflict detection. Even when versions with a big time difference are
merged, changes are located just as precisely, because cells are persistent over time.

Figure 2b illustrates how edits on the graph model are captured in a causality graph of operations
based on this segmentation. The edges are moved from the “QA” placeholder node v2 to the “Unit

5 / 24 Volume 82 (2022)

Lazy Merging

e1

v2

Develop Code

QA

v1

Deploy Codev3

e2

source

target

label

label

label

source

target

Develop Code

Deploy Code

QA

Cell Segmentation

(a) Applying a persistent cell seg-
mentation with unique identifiers.

Develop Code

Deploy Code

QA

Develop Code

Deploy Code

Unit Tests

e1

e2

e1

e2

2 e2.source ≔ v2

v1

v3

v2

v1

v4

v3 4 e2.source ≔ v4

Perform Edit Record Edit

1 e1.target ≔ v2

3 e1.target ≔ v4

2 e2.source ≔ v2

1 e1.target ≔ v2

(b) Recording cell assignments.

Figure 2: The cell segmentation is the basis for change recording.

ISoLA DS 2022 6 / 24

ECEASST

Source

Target B

Target C

✓

✓

Target A

(a) Showing a generalized view.

Source

Target B

Target C

Target A

User X moved to B
User Y moved to C

✓

✓

(b) Showing the annotated last consensus.

Figure 3: Editors can provide different projections of variant potentials.

Tests” node v4, which causes assignments in the cells for their target and source property. Other
operations on graph models could be modeled similarly:

• All simple properties can be captured in cells as well (labels, colors, etc.).

• Moving an object into a different container is an assignment to its parent cell.

• Deleting and restoring an object is an assignment to a boolean-valued cell for its presence.

When we discuss operation causality in the remaining section, we will use the generic variables x
and y to identify cells for brevity.

3.4 Lazy Editing

The application of a cell segmentation and variant potentials in each cell lead to an enriched
document model. Syntactical elements need to be augmented with persistent unique identifiers to
support the cell segmentation, and cells must have the capacity to store variant potentials. Plaintext
programming languages and editors are neither capable of maintaining persistent identifiers for
syntactical elements, nor can they represent variant potentials in their syntax. Therefore, lazy
merging needs a structure editor that is able to maintain the cell segmentation when the user
edits the collaborative documents. The editor also interleaves the display of the document with
visualizations of variant potentials, so that participants can inspect and resolve conflicts in place.

Additionally, this editor can provide different projections on the variant potentials. Figure 3
shows two possible projections for a variant potential in a target cell of an edge. The first projection
renders all possibilities simultaneously. The second projection displays the last consensus and
lists the variants in a popover. Depending on the situation, participants can choose a projection
that supports them best.

The editor records all user input and saves the resulting assignments to cells in the causality
graph. This is a simple and efficient way to record changes that does not require running diffing
algorithms on the whole document. The editor could also provide a stream of operations as they
happen, to replicate them in real time between participants to enable live collaboration.

7 / 24 Volume 82 (2022)

Lazy Merging

D2

D6

2 y ≔ A

3 x ≔ B

D3

D5

D3 = record(D2, (x, B))

D4 = record(D2, (x, C))
D5 = record(D4, (y, D))

D6 = merge(D3, D5)

5 y ≔ D

5 y ≔ D

1 x ≔ A

2 y ≔ A

1 x ≔ A

4 x ≔ C

2 y ≔ A

1 x ≔ A

4 x ≔ C3 x ≔ B

2 y ≔ A

1 x ≔ A

Figure 4: Recording and merging document causality graphs.

4 Recording and Aggregating Changes

This section discusses how changes are recorded and aggregated following the causality of edit
operations. Important properties are proven, giving strong confidence in the behavior of the
system.

4.1 Document Causality Graphs

The causality of edit operations is the key to properly capture the intentions of participants. We
follow Lamport’s definition of the happened-before relation [Lam78] when we record the local
perspective on causality for each participant in document causality graphs. Document causality
graphs capture the causality of operations in a strict order. When a new operation is recorded, it is
considered to have happened after all the existing operations in the local document causality graph.
The collaboration system provides globally unique identifiers for each recorded operation. We
assume that identifiers are generated in an ascending total order to simplify our proofs, although in
practice it is sufficient to use randomly generated identifiers. This preserves the global consistency
of the strict order when concurrently evolving document causality graphs are merged with a union.
Figure 4 shows the concurrent recording of operations and the merging of the document causality
graphs in an example.

ISoLA DS 2022 8 / 24

ECEASST

Definition 1 (Globally consistent document causality graphs) If I is a set of totally ordered
identifiers, C is a set of cells, and V is a set of values, then OD = I × (C×V) is the set of all
possible operations, tagged with identifiers.

Document causality graphs D are a graph ⟨O,→⟩, where O ⊆ OD , and (→)⊆ O×O. Within
a collaboration system, they can be constructed according to the following rules:

1. ⟨ /0, /0⟩ ∈ D .

2. If ⟨O,→⟩ ∈ D , given an assignment (c,v) ∈C×V , and the collaboration system generates
a fresh globally unique identifier i that is strictly greater than all previously generated
identifiers, then o = (i,(c,v)) is a new operation record, and so

recordD(⟨O,→⟩,(c,v)) = ⟨O∪{o},(→)∪ (O×{o})⟩ ∈ D

3. If ⟨O1,→1⟩,⟨O2,→2⟩ ∈ D , then

mergeD(⟨O1,→1⟩,⟨O2,→2⟩) = ⟨O1 ∪O2,(→1)∪ (→2)⟩ ∈ D

Lemma 1 If an operation is in a document causality graph, the strict order includes all of its
global lower bounds.

Proof. Operations are recorded with all of their lower bounds, and there is no way to add or
remove a lower bound.

Theorem 1 For every ⟨O,→⟩ ∈ D , → is a strict order.

Proof. The total order of identifiers is a topological order for →, so it is irreflexive and antisym-
metric. → is also transitive due to Lemma 1.

We introduce the idea of conservative extension to describe how document causality graphs can
evolve over time. Document causality graphs are by construction an append-only data structure,
once an operation is recorded it stays in the graph. So conservative extension requires regular
inclusion (⊆) between the operations of document causality graphs. Additionally, causality
dependencies of existing operations cannot be changed. No predecessors of an existing operation
are allowed to be added or removed. So new assignment operations can only be added after or
next to the existing ones, which is in line with the general behavior of causality. One document
causality graph is a valid successor of another if and only if it is a conservative extension.

Definition 2 (Conservative extension of document causality graphs) Let ⟨O1,→1⟩,⟨O2,→2⟩ ∈D .
Then the conservative extension of document causality graphs ⊑D is defined as:

⟨O1,→1⟩ ⊑D ⟨O2,→2⟩=df O1 ⊆ O2 ∧ (→1)⊆ (→2)

∧∀y ∈ O1.{x | x →1 y}= {x | x →2 y}

Theorem 2 recordD and mergeD perform conservative extensions.

9 / 24 Volume 82 (2022)

Lazy Merging

A2

D5

A1

B3

y = {D}x = {B, C}

C4

A2A1

B3

y = {A}x = {B}

A2

D5

A1

C4

y = {D}x = {C}

X3

X5

X6

A1 A2

x = {A} y = {A}

X2

X3 = record(X2, (x, B))

X4 = record(X2, (x, C))
X5 = record(X4, (y, D))

X6 = merge(X3, X5)

Figure 5: Recording and merging cartesian causality decompositions.

Proof. Both recording and merging include the given document causality graphs in the union
they form. And due to Lemma 1, the set of predecessors cannot change.

Theorem 3 ⟨D ,⊑D⟩ is a partial order and a lattice of document causality graphs with the
pairwise union/intersection as the supremum/infimum.

Proof. ⊑D is obviously reflexive, and because it requires the inclusion for both sets it is antisym-
metric. ⊑D is also transitive, because if the predecessors do not change from a → b and from
b → c, they neither do change from a → c. Document causality graphs are pairs of power set
elements, so their union is the supremum. And this supremum always exists as the mergeD that
we demand in the construction. The intersection of document causality graphs is naturally their
infimum.

Observation 1. Merges of document causality graphs are suprema, and infima are the point at
which concurrent evolutions diverged.

4.2 Cartesian Causality Decompositions

Document causality graphs capture the full causal order of all operations, but they do not imme-
diately show the current valuation of each cell. Cartesian causality decompositions record the
causal graphs separately for each cell, as shown in Figure 5. They provide a perspective where the
current state of the document is easy to determine, because the valuation for each cell is obvious
from the decomposed operations.

ISoLA DS 2022 10 / 24

ECEASST

Definition 3 (Globally consistent cartesian causality decompositions) If I is a set of totally
ordered identifiers and V is a set of values, then OX = I ×V is the set of all possible value
assignments, tagged with identifiers.

If C is a set of cells, then globally consistent cartesian causality decompositions X are a tuples
of causality graphs (⟨Oc,→c⟩)c∈C, where each Oc ⊆ OX , and each (→c)⊆ Oc ×Oc. Within a
collaboration system, they can be constructed according to the following rules:

1. (⟨ /0, /0⟩)c∈C ∈ X .

2. If X ∈ X , given an assignment (c1,v) ∈ C×V , and the collaboration system generates
a fresh globally unique identifier i that is strictly greater than all previously generated
identifiers, then o = (i,v) is a new value assignment record, and so

recordX (X ,(c1,v)) =
({

⟨Oc ∪{o},(→c)∪ (Oc ×{o})⟩ if c = c1
⟨Oc,→c⟩ otherwise

}
| ⟨Oc,→c⟩= Xc)c∈C ∈ X

3. If X1,X2 ∈ X , then

mergeX (X1,X2) =(⟨O1 ∪O2,(→1)∪ (→2)⟩
| ⟨O1,→1⟩= (X1)c ∧⟨O2,→2⟩= (X2)c)c∈C ∈ X

Lemma 2 If an operation is in one causality graph of a cartesian causality decomposition, its
strict order includes all global lower bounds.

Proof. The rationale of Lemma 1 applies the same way for cartesian causality decompositions.

Theorem 4 For every X ∈ X , c ∈C, and ⟨Oc,→c⟩= Xc, →c is a strict order.

Proof. Because the causality graphs of cartesian causality decompositions are kept completely
separate, the rationale of Theorem 1 carries over, considering Lemma 2.

We establish the rule that within the causality graphs, an operation supersedes all the operations
that happened before it. This rule leads to sensible and intuitive behavior, because participants
acknowledge all previous operations as they work on the current version. So the leafs in the
causality graphs determine the current valuation of each cell, as they are maximal within the strict
order. Usually, there is only one leaf which determines the value, unless conflicts occur. Then
each of the leafs represents one conflicting variant. In this case, the cell contains multiple values.

Definition 4 (Cell valuations) Each cell is valued with the set of values in the leaf nodes:

valuations : X → ∏
c∈C

P(V)

valuations(X) = ({v | (i,v) ∈ Oc ∧ (∀o ∈ Oc.(i,v) ̸→c o)∧⟨Oc,→c⟩= Xc)c∈C

11 / 24 Volume 82 (2022)

Lazy Merging

A2

D5

A1

B3

y = {D}x = {B, C}

C4

X6

X7 = record(X6, (x, B)) A2

D5

A1

B3

y = {D}x = {B}

C4

X7

B6

Figure 6: Resolving variant potentials with a regular assignment.

After merging, new variant potentials may arise. To resolve them, participants can simply
assign a new value to the respective cell (cf. Figure 6). The assignment will supersede all existing
variants and resolve the potential.

Cartesian causality decompositions show that all resolution decisions are permanent. The
decision supersedes all previous variants, and because assignments cannot be removed once they
are recorded there is no way to bring them back. So no matter how intertwined further merges are,
past variants are guaranteed to never accidentally reappear.

Definition 5 (Conservative extension of cartesian causality decompositions) Let X1,X2 ∈ X .
Then the conservative extension of cartesian causality decompositions ⊑X is the product order of
conservative extension on causality graphs:

X1 ⊑X X2 = ∀c ∈C.O1 ⊆ O2 ∧ (→1)⊆ (→2)

∧∀y ∈ O1.{x | x →1 y}= {x | x →2 y},
where ⟨O1,→1⟩= (X1)c ∧⟨O2,→2⟩= (X2)c

Theorem 5 recordX and mergeX perform conservative extensions.

Proof. The rationale of Theorem 2 applies to the product of causality graphs as well, considering
Lemma 2.

Theorem 6 ⟨X ,⊑X ⟩ is a partial order and a lattice of cartesian causality decompositions
with the product of unions/intersections as the supremum/infimum.

Proof. The reasoning for ⊑X being a partial order is analogous to Theorem 3: It is obviously
reflexive, it is antisymmetric because the inclusion is required for all sets, and it is transitive
because the preservation of predecessors is transitive. Because ⊑X is a product order, the
supremum of cartesian causality decompositions is the product of the causality graph suprema. As
of Theorem 3, that is the product of the causality graph unions, which always exists as mergeX .
The product of intersections is naturally the infimum.

ISoLA DS 2022 12 / 24

ECEASST

Observation 2. Merges of cartesian causality decompositions are suprema, and infima are the
point at which concurrent evolutions diverged.

4.3 Cartesian Lifting

Cartesian lifting can derive the corresponding cartesian causality decompositions from document
causality graphs. It separates the causality graph by the cell that each operation is applied to.
Figure 7 shows how a whole history of document causality graphs is projected onto a history of
cartesian causality decompositions.

Definition 6 (Cartesian lifting) The set of operations is partitioned by the cell they are applied
to, so for each cell c there is a set of operations Oc:

Oc = {(i,v) | (i,(c1,v)) ∈ O∧ c1 = c}

Separate causality relations →c are created for each cell c, which only capture the relationships
between operations on this cell:

(i1,v1)→c (i2,v2) = (i1,(c1,v1))→ (i2,(c2,v2))∧ c1 = c2 = c

Then cartesian lifting is defined as:

lift : D → X

lift(⟨O,→⟩) = (⟨Oc,→c⟩)c∈C

Theorem 7 Cartesian causality decompositions produced by cartesian lifting are globally
consistent.

Proof. Because the operations are uniquely identified within the whole document causality graph,
they are also uniquely identified in each subset that is formed by cartesian lifting. And cartesian
lifting maps every construction step of document causality graphs onto a valid construction step
of cartesian causality decompositions.

Observation 3. Cartesian lifting maps the empty document causality graph to the empty cartesian
causality decomposition.

lift(⟨ /0, /0⟩) = (⟨ /0, /0⟩)c∈C

Theorem 8 Cartesian lifting is a record homomorphism (cf. Figure 9). Let ⟨O,→⟩ ∈ D and
(c,v) ∈ (C×V), then:

lift(recordD(⟨O,→⟩,(c,v))) = recordX (lift(⟨O,→⟩),(c,v))

13 / 24 Volume 82 (2022)

Lazy Merging

A1 A2

x = {A} y = {A}
A2

D5

A1

B3

y = {D}x = {B, C}

C4

A2A1

B3

y = {A}x = {B}

A2

D5

A1

C4

y = {D}x = {C}

cartesian lifting

D2

D3

D5

D6

X3

X5

X6
X2

〈𝒳,⊑𝒳〉

〈𝒟,⊑𝒟〉

⊔𝒟

⊑𝒳

⊑𝒳

⊔𝒳

⊑𝒟

⊑𝒟

5 y ≔ D

4 x ≔ C3 x ≔ B

2 y ≔ A

1 x ≔ A

5 y ≔ D

4 x ≔ C

2 y ≔ A

1 x ≔ A

3 x ≔ B

2 y ≔ A

1 x ≔ A

2 y ≔ A

1 x ≔ A

Figure 7: Cartesian lifting derives the cartesian causality decompositions from the document
causality graphs.

ISoLA DS 2022 14 / 24

ECEASST

Proof.

lift(recordD(⟨O,→⟩,(c1,v)))

= lift(⟨O∪{(i,(c1,v))},(→)∪ (O×{(i,(c1,v))})⟩) | Def. recordD

= (⟨(O∪{(i,(c1,v))})c,((→)∪ (O×{(i,(c1,v))}))c⟩)c∈C | Def. lift

=

({
⟨Oc ∪{(i,v)},(→c)∪ (Oc ×{(i,v)})⟩ if c = c1
⟨Oc,→c⟩ otherwise

}
| ⟨Oc,→c⟩= Xc)c∈C | Def. Oc,→c

= recordX (X ,(c1,v)) | Def. recordX

= recordX (lift(⟨O,→⟩),(c1,v)) | Def. lift

Theorem 9 Cartesian lifting is a merge homomorphism (cf. Figure 10). Let
⟨O1,→1⟩,⟨O2,→2⟩ ∈ D , then:

lift(⟨O1,→1⟩⊔D ⟨O2,→2⟩) = lift(⟨O1,→1⟩)⊔X lift(⟨O2,→2⟩)

Proof.

lift(mergeD(⟨O1,→1⟩,⟨O2,→2⟩))
= lift(⟨O1 ∪O2,(→1)∪ (→2)⟩) | Def. mergeD

= (⟨(O1 ∪O2)c,((→1)∪ (→2))c⟩)c∈C | Def. lift

= (⟨O1c ∪O2c ,(→1c)∪ (→2c)⟩)c∈C | Def. Oc,→c

= mergeX ((⟨O1c ,→1c⟩)c∈C,(⟨O2c ,→2c⟩)c∈C) | Def. mergeX

= mergeX (lift(⟨O1,→1⟩), lift(⟨O2,→2⟩)) | Def. lift

Corollary 1 Because merges are suprema, cartesian lifting is a supremum homomorphism.

Cartesian lifting is a homomorphism for all possible construction steps, so it is an accurate
projection. It is always possible to switch from document causality graphs to cartesian causality
decompositions and continue the construction there. The end result will be the same as if the
construction had happened on the document causality graphs and would then have been lifted
afterwards.

The homomorphism properties provide an opportunity for runtime verification. When the
implementation performs the constructions in one world, a runtime monitor can simultaneously do
the constructions in the other world. Then cartesian lifting can be used to check if the constructions
correspond with each other. This could ensure the correctness of optimizations.

Cartesian lifting is a non-injective projection, as it discards operation causalities between
different cells. For every cell, causalities are considered only in isolation. Figure 8 provides an
example for this. The document causality graph clearly shows that (x,y) are either (B,B) (left
branch) or (C,C) (right branch). On the other hand, the cartesian causality decomposition values
the tuple (x,y) with any element of the cartesian product {B,C}×{B,C}. So the edit context of
operations is not yet considered in the current concept of lazy merging.

15 / 24 Volume 82 (2022)

Lazy Merging

6 y ≔ C4 y ≔ B

A2

B4

A1

B3

y = {B, C}x = {B, C}

C5 C6
cartesian
lifting

〈𝒟, ⊑𝒟〉 〈𝒳, ⊑𝒳〉

5 x ≔ C3 x ≔ B

2 y ≔ A

1 x ≔ A

Figure 8: Cartesian lifting is non-injective.

5 Impact D × (C×V) D

X × (C×V) X

lift id

recordD

lift

recordX

⟲

Figure 9: Cartesian lifting is a
record homomorphism.

D ×D D

X ×X X

lift lift

mergeD =⊔D

lift

mergeX =⊔X

⟲

Figure 10: Cartesian lifting is a
merge/supremum homomorphism.

Lazy merging tackles the hard problem of branch reconcil-
iation by clearly separating merging and conflict resolution.
This separation makes it possible to model merging with lat-
tices and establish invariants that are not possible in systems
that intermingle merging and conflict resolution. Because
merges are the suprema in their respective lattice they inherit
several important properties. First, merges are complete,
minimal, and unique, as suprema are the least upper bound.
Because they are complete, merges include all operations
and all their causal dependencies. No information is lost,
and no changes are arbitrarily discarded. Minimality ensures
that during merging no additional causal relationships are
accidentally introduced. No noise or verbosity can appear
from merging. And the uniqueness of merges makes them
deterministic and always automatically computable. Thus,
participants can always merge safely and be confident to get
a good result.

Second, merging is commutative, associative, and idem-
potent, derived from the algebraic properties of suprema. Commutativity ensures that no matter
which participant performs the merge, the result will always be the same. When more than
two branches are merged at once, commutativity and associativity make the order in which the
branches are merged irrelevant. There is only one canonical result when n branches are merged.
And because of idempotence, it does not matter if branches are merged multiple times, the end
result will always be as if they were merged only once. Participants can be sure that even in

ISoLA DS 2022 16 / 24

ECEASST

complex scenarios with many branches merging always works as expected. All these properties
hold for the merges of both document causality graphs and cartesian causality decompositions.

The segmentation of documents into persistent, uniquely identifiable cells enables much more
precise change recording compared to traditional VCSs. Many VCSs (including recent approaches
like Pijul, cf. Section 6.3) operate directly on plain text files and always use text lines as the
segments at which they operate, regardless of the content. These text lines have no persistent
identifiers in the plaintext files, so they have to rely on complicated and heuristic diffing algorithms
to match changes with best effort.

Variant potentials in cells are the key enabler for laziness and completely change the way
conflicts are treated in the collaboration system. It relieves the need for constant eager merging
and enables the collaboration system to represent and explain conflicts, with the aforementioned
benefits (cf. Section 3). Current systems simply have no facility to represent and aggregate
conflicts in this way.

The fact that regular assignment operations resolve variant potentials is a significant simplifica-
tion for the protocol. If another assignment happens on the cell concurrently to a resolution, or if
two different resolutions are carried out concurrently, that will be properly aggregated back into a
variant potential. In this way, edits and resolution operations are independent of each other and
can be used freely. For participants, it is always safe to perform variant potential resolutions.

The granularity of cells can be adjusted to provide the best possible perspective on changes and
conflicts in each domain. Highly structured data like graph models can profit from fine-grained
cells because edits are easily located. Free-form natural language content would probably best be
represented by more coarse-grained cells, perhaps one cell per sentence or even per paragraph.
And of course the trivial segmentation where the whole document is one cell is also possible. This
would disable the cartesian decomposition and would allow integrating other forms of conflict
detection and aggregation into the system, like e.g. traditional diffing algorithms.

Document causality graphs and cartesian causality decompositions are two perspectives that
are each valuable for different parts of the collaboration system. Document causality graphs are
the source of truth and can provide the full history of operations, with all causality relationships
between them. Cartesian causality decompositions on the other hand show the current state
and variant potentials, so they are used during the editing of documents. The strong connection
between the two provided by the homomorphism properties of cartesian lifting enables the
collaboration system to work on any of them interchangeably.

The editor and data structure as presented in this paper have been implemented in interactive
prototypes. A live collaboration system for graph models2 demonstrates a structure editor for lazy
merging that is capable of rendering and resolving variant potentials as described in Section 3.4.
For a simple key-value store, the behavior of the lazy merging data structure is visualized during
branching & merging3, following the same graphical notation as Section 4. The visualization is
accompanied by a simple collaborative editor4 for the key-value store.

2 https://graph-models.lazy-merging.jonas-schuermann.name/
3 https://data-structure.lazy-merging.jonas-schuermann.name/
4 https://key-value.lazy-merging.jonas-schuermann.name/

17 / 24 Volume 82 (2022)

https://graph-models.lazy-merging.jonas-schuermann.name/
https://data-structure.lazy-merging.jonas-schuermann.name/
https://key-value.lazy-merging.jonas-schuermann.name/

Lazy Merging

6 Related Work

In this section we present related approaches that attempt to improve the handling of conflicts or
formalize collaboration systems similarly. Wieland et al. explained why conflict representation
matters and built a prototype to evaluate their ideas. Conflict-free replicated data types (CRDTs)
are another, lower-level formalism that utilizes lattice theory similarly to lazy merging. And Pijul
is a distributed VCS that introduced a robust conflict representation for plaintext files.

6.1 Wieland et al., 2012

In their paper “Turning Conflicts into Collaboration” Wieland et al. presented their vision for
a conflict-tolerant collaboration system. They explained how conflicts can help to uncover
disagreements and find solutions that work for everyone. The paper relied on expert interviews to
show the importance of conflict tolerance, collaborative conflict resolution, and comprehensible
evolution. They proceeded to build a prototype collaboration system that fulfills these requirements
and conducted a case study to evaluate their results. [WLS+12]

Wieland et al. produced expedient empirical results about collaboration practices, which are
also relevant for the lazy merging concept. The overall goals of their work and lazy merging
align, what is different is the approach to the problem. They approached the implementation of
the collaboration system with object-oriented design methods, while lazy merging emerges from
a stringent mathematical model. As demonstrated in this paper, the mathematical approach yields
invaluable invariants that prove correctness and robustness properties. Wieland et al. considered
properties like completeness and minimality of merges in the case study, but they only showed
them for one example. However, their case study examined human behavior within such a
collaboration system, this has not yet been done for the lazy merging approach.

Furthermore, Wieland et al. co-opt existing annotation nodes within graph models to represent
conflicts textually. In contrast, lazy merging extends the document model with variant potentials
as a first-class concept. This more structured approach simplifies the aggregation of variant
potentials and allows for different projectional visualizations.

One feature that sets their merge algorithm apart from lazy merging is the consideration the
edit context during conflict detection. Concurrent changes in the context can significantly alter
the meaning of edits, so it is valuable to capture these kinds of conflicts. Lazy merging does not
support this kind of conflict detection yet.

Their prototype also featured a guided conflict resolution process with different states, which
included task assignment, resolution proposals and decision-making. This supports the recon-
ciliation efforts of the participants, but it is unclear how the process behaves in the presence
of concurrency. Without further measures, the resolution process would have to be performed
synchronously and block all affected elements, to prevent further simultaneous edits. This would
prevent the usage of branches and offline working during conflict resolution. Lazy merging has a
less sophisticated resolution mechanism, but both merging and conflict resolution are independent
operations that are always available. There is no additional coordination needed, merging and
conflict resolution always work on any branch and when offline. If a resolution conflicts with an-
other concurrent resolution or another concurrent assignment, all variants are properly aggregated
into a potential. So with lazy merging, resolution operations can be used more freely.

ISoLA DS 2022 18 / 24

ECEASST

6.2 Conflict-Free Replicated Data Types (CRDTs)

payload D D
initial ⟨ /0, /0⟩

update record (C c, V v)
D := recordD(D,(c,v))

query project () : X X
let X = lift(D)

compare (D1, D2) : boolean b
let b = D1 ⊑D D2

merge (D1, D2) : payload D3
let D3 = mergeD(D1,D2)

Figure 11: Specification of
lazy merging as a state-based
CRDT.

CRDTs5 introduced a solid theoretical foundation for the design
of eventual consistent data structures. In decentralized systems,
they can store shared data among multiple replicas, each of which
can be optimistically updated without coordination. Despite their
decentralized operation, they are guaranteed to eventually con-
verge on a consistent state. State-based CRDTs provide a merge
operation, and lattice theory was used to prove convergence after
reciprocal merging. [SPBZ11]

The theoretical argument is similar for state-based CRDTs and
lazy merging as presented in this paper. Both approaches model
merges as suprema and prove important properties in this way.
In fact, lazy merging constitutes a state-based CRDT, as shown
in Figure 11. So lazy merging inherits properties of CRDTs
like guaranteed convergence and the ability for decentralized
operation.

Technically, variant potentials behave similarly to multi-value register CRDTs [SPBZ11]. But
while multi-value registers typically rely on version vectors to capture operation causality, variant
potentials use the history of operations that is already available. Additionally, multi-value registers
only show the current valuation, while variant potentials provide the history of all assignments
ever made to their cell.

Conceptually, there is a big difference between CRDTs and lazy merging. CRDTs are general-
purpose data structures for decentralized systems. They aim to avoid conflicts from concurrent
updates by specifying automatic resolution semantics. While they can be used to implement
collaboration systems, they are not concerned with the design of collaboration processes. CRDTs
are implementation building blocks, lazy merging is a holistic high-level approach for the design
of collaboration systems. Lazy merging builds potentials from conflicts instead of eliminating
them arbitrarily. And it provides a rigorous concept from the implementation of the data structure
to the user interface design.

6.3 Pijul

The distributed VCS Pijul6 is built on theoretical foundations similar to lazy merging. The
Pijul authors argued with category theory and stated that every merge is a pushout, which is
the analogous concept to suprema in lattice theory. They, too, generalized the data model to
include these pushouts and represent conflicts as regular elements of the documents [MG13].
Pijul operates on plaintext files, which it treats as sequences of lines. Within the repository, files
are represented as graphs, to represent the results of concurrent insertions and deletions [Meu].

In principle, Pijul provides a robust and expressive representation for conflicts within the
repository. But this representation is severely limited by the usage of plaintext files when
participants edit the documents. Only simple conflicts can be adequately expressed with textual

5 https://crdt.tech/
6 https://pijul.org/

19 / 24 Volume 82 (2022)

https://crdt.tech/
https://pijul.org/

Lazy Merging

conflicts markers, and the presence of conflict markers destroys the syntactic consistency of the
text document. In contrast, lazy merging considers conflict representation not only in the data
structure, but also shows how editors can properly communicate them to the participants.

Although the authors suggested that Pijul could operate on the actual syntax of programming
languages instead of lines of text, this is not yet supported. So Pijul currently suffers the same
inaccuracies in conflicts detection like traditional VCSs. For example, it cannot differentiate
between syntactically irrelevant changes (reformatting, changes in white space) and other syntac-
tically relevant changes. And it cannot operate at the granularity of syntactical elements, as lines
are treated as atomic units. Lazy merging requires that the collaboration system operates on the
actual syntax of the documents, for accurate conflict detection and representation.

Furthermore, Pijul has no mechanism to reliably track the identity of text lines once they
are rendered in plaintext files for participants to work on. Thus, it requires the same heuristic
diffing algorithms also used in traditional VCSs. These algorithms are quite complicated and
can only guess which blocks of text moved where, because plaintext files do not provide any
metadata to track their movements. The generated diffs only describe insertions and deletions and
cannot adequately represent the movement of blocks across the document. Lazy merging does not
require any heuristic diffing algorithms, because it is integrated with a syntax-aware editor. As
all syntactical elements are uniquely identifiable, all changes can be reliably located and easily
recorded. And with proper data modeling, movements of elements can be properly captured by
respective value assignments.

7 Future Work

The next logical step is the implementation of a real-world collaboration system based on the lazy
merging concept. Our chair develops the graphical language workbench Cinco Cloud [BBK+22],
which currently uses a simple optimistically concurrent live collaboration protocol. We want to
use lazy merging to build a new and more powerful collaboration protocol for Cinco Cloud that
supports branching & merging with lazy conflict resolution. More operations will be needed for
the practical use as a VCS, like reverts, or features like cherry-picking. Change management
processes are needed to coordinate incoming changes and perform peer reviews. A lot more work
is also needed to explore how participants can interact with the collaboration history. How can
the comprehension of the history be supported, how can conflicts be explained and resolved in
a guided fashion? Finally, there are many more questions regarding the actual implementation
of the system. How is data persisted, how does the network protocol work, how is the user
interface implemented, is the system efficient and scalable? This implementation would be a
great opportunity for a case study that evaluates the real-world applicability of the lazy merging
concept.

Changes in the context of an edit can significantly alter its meaning [WLS+12]. But as discussed
previously, cartesian lifting completely discards the context of cells within the document. So the
current lazy merging concept does not account for this. One idea would be to introduce certain
implications in the cartesian lifting function. An assignment to a property cell of an entity implies
the assignment of the value True to its presence cell. This would provoke a conflict if the entity is
concurrently deleted by assigning False to the presence cell. Edit/delete conflicts are accounted

ISoLA DS 2022 20 / 24

ECEASST

for with such implications, but it is still unclear if this is the best approach and how a more general
notion of context-aware conflict detection can be implemented.

As discussed in Section 3.4, lazy merging requires persistent unique identifiers for syntactical
elements and the capability to represent variant potentials within collaborative documents. Plain-
text programming languages (e.g., Java) do not offer these facilities, so it is not straightforward to
apply lazy merging to them. Because the overwhelming majority of coding is currently done in
plaintext editor environments, it is important to investigate how lazy merging can be applied to
these languages. Structure editors that target textual languages like JetBrains MPS [BCCP21]
seem to be promising to bridge this gap. They provide a user experience similar to traditional
plaintext editors, but at the same time maintain a structured AST that could be extended with the
necessary metadata to support lazy merging. It is not ruled out that plaintext language grammars
could be extended to provide the necessary facilities for lazy merging without relying on a struc-
ture editor. But it is questionable if this could be achieved in a straightforward and ergonomic way.
Furthermore, because textual languages are usually structured hierarchically, the consideration of
the edit context becomes even more important.

Conflict resolution in lazy merging is currently very simple, regular assignments select a
resolution. More sophisticated mechanisms could further support participants in finding good
resolutions. For example, adding and removing single variants without resolving the potential
could be useful to collect incomplete information. Assigning the whole set of values in a variant
potential would allow for this, and this seems to be easy to do with lazy merging. Another example
would be the explicit management of resolution decisions. Variant potentials could be annotated
to be postponed for a certain time or to require the attention of specific participants.

Although this paper only discussed version control with state-based branching & merging,
the proposed data structure is also suitable for a live collaboration protocol. The fine-grained
change recording enables efficient replication and concurrent assignments commute, which easily
ensures correctness. A future paper should examine that perspective and the integration of live
collaboration with branching & merging. Branches could become convergent workspaces that are
replicated live to all interested participants. Lazy merging could provide a fault-tolerant protocol
and allow for seamless offline working, because any divergences can be safely merged. This
would enable uninterrupted work in the isolation of branches, but still provide the possibility to
collaborate in real-time.

When it comes to the versioning of modeling languages, lazy merging opens up possibilities
for new generation strategies. Generators could translate variant potentials from the source model
into variant potentials in the target model. For example, if an executable application is generated
from the models, a variant potential could be translated to a runtime setting. This propagation
of laziness is probably not always easy to accomplish, but it would unlock generation to enable
testing and execution in the presence of variant potentials.

Another way to handle variant potentials in source models could be a partial generation strategy.
The generator analyses the dependencies needed for every target and generates only those targets
whose dependencies are free from variant potentials. This would further reduce blocking caused
by the occurrence of conflicts.

In [KWHM19] Kleppmann et al. present their vision for local-first software. The goal of local-
first software is to give back participants the ownership over their data. The participants’ data
is primarily stored decentralized on their devices instead of a centralized remote storage. They

21 / 24 Volume 82 (2022)

Lazy Merging

find CRDTs to be suitable for the implementation of these decentralized collaboration systems
because of their reliability and ease of use. They make a convincing argument, but they also assert
that conflicts are not a big problem even after prolonged offline working. The generic resolution
mechanisms of CRDTs allegedly suffice to handle conflicts. This is contrary to the arguments
presented in this paper, which show the importance of proper conflict preservation and resolution.
Furthermore, they recognize the value of branching & merging, but pose its implementation as a
future research question. Lazy merging could make offline working safer by properly representing
conflicts as variant potentials and bring branching & merging to local-first software.

8 Conclusion

Lazy merging is a new approach to the problem of merging and conflict resolution in collaboration
systems. We used a real-world example to illustrate new collaboration mechanisms that are
enabled by lazy merging. Lazy merging introduces variant potentials to capture conflicts and
aggregate them robustly even in complex merging scenarios. They separate merging from conflict
resolution, so that merging can be easily automated, while participants are properly supported to
resolve conflicts explicitly. Variant potentials capture and hold conflicts, postponing the resolution
and supporting communication between participants to uncover disagreements. Contributions
can be brought in without interruption and conflicts can be shared and resolved collaboratively.
Lazy merging segments documents into persistent, uniquely-identifiable cells for precise change
recording and conflict detection. The granularity of this segmentation can be adapted for an
optimal perspective on changes and conflicts in any given domain. A structure editor is used to
visualize variant potentials and handle the enriched document format. Value assignments to cells
are recorded in two different ways. Document causality graphs thoroughly record the complete
causality graph between all operations. Cartesian causality decompositions record the causalities
separately for each cell, which captures less information but easily shows the current valuation
of each cell. Document causality graphs and cartesian causality decompositions both form a
lattice regarding their conservative extension. Merges are suprema in these lattices, so they are
guaranteed to be complete, minimal, unique, commutative, associative, and idempotent. Finally,
cartesian lifting is introduced as a projection from document causality graphs to cartesian causality
decompositions. Cartesian lifting is an accurate projection because it is a homomorphism with
regard to all of their possible construction steps.

Lazy merging enables powerful features like branching & merging, but it also preserves usability
and supports the participants’ comprehension of conflicts. Conflict preservation and collaborative
conflict resolution foster alignment within teams. It is built on strong theoretical foundations
that give confidence in the correctness and robustness of the system. At the same time, lazy
merging brings simplicity to the implementation of collaboration systems. This paper explained
the fundamental concept of lazy merging, demonstrated its impact, and highlighted many exiting
avenues for future research.

ISoLA DS 2022 22 / 24

ECEASST

Bibliography

[BBK+22] A. Bainczyk, D. Busch, M. Krumrey, D. S. Mitwalli, J. Schürmann,
J. Tagoukeng Dongmo, B. Steffen. CINCO Cloud: A Holistic Approach for Web-
Based Language-Driven Engineering. In Margaria and Steffen (eds.), Leveraging
Applications of Formal Methods, Verification and Validation. Software Engineering.
Pp. 407–425. Springer Nature Switzerland, Cham, 2022.
doi:10.1007/978-3-031-19756-7 23

[BBR+12] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, P. Devanbu. Cohesive
and Isolated Development with Branches. In Lara and Zisman (eds.), Fundamental
Approaches to Software Engineering. Pp. 316–331. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-28872-2 22

[BCCP21] A. Bucchiarone, A. Cicchetti, F. Ciccozzi, A. Pierantonio. Domain-Specific Lan-
guages in Practice: with JetBrains MPS. Springer International Publishing, 2021.
doi:10.1007/978-3-030-73758-0

[CS14] S. Chacon, B. Straub. Pro Git. The expert’s voice. Apress, 2014.
https://git-scm.com/book/en/v2

[KWHM19] M. Kleppmann, A. Wiggins, P. van Hardenberg, M. McGranaghan. Local-First
Software: You Own Your Data, in Spite of the Cloud. In Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. Onward! 2019, p. 154–178. Association
for Computing Machinery, New York, NY, USA, 2019.
doi:10.1145/3359591.3359737

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7):558–565, July 1978.
doi:10.1145/359545.359563

[Men02] T. Mens. A State-of-the-Art Survey on Software Merging. Software Engineering,
IEEE Transactions on 28:449–462, June 2002.
doi:10.1109/TSE.2002.1000449

[Meu] P.-É. Meunier. The Pijul manual. https://pijul.org/manual/. [Online; last accessed
02-March-2023].

[MG13] S. Mimram, C. D. Giusto. A Categorical Theory of Patches. Electronic Notes in
Theoretical Computer Science 298:283–307, Nov. 2013.
doi:10.1016/j.entcs.2013.09.018

[PSW11] S. Phillips, J. Sillito, R. Walker. Branching and Merging: An Investigation into
Current Version Control Practices. In Proceedings of the 4th International Workshop
on Cooperative and Human Aspects of Software Engineering. ACM, may 2011.
doi:10.1145/1984642.1984645

23 / 24 Volume 82 (2022)

http://dx.doi.org/10.1007/978-3-031-19756-7_23
http://dx.doi.org/10.1007/978-3-642-28872-2_22
http://dx.doi.org/10.1007/978-3-030-73758-0
https://git-scm.com/book/en/v2
http://dx.doi.org/10.1145/3359591.3359737
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/TSE.2002.1000449
https://pijul.org/manual/
http://dx.doi.org/10.1016/j.entcs.2013.09.018
http://dx.doi.org/10.1145/1984642.1984645

Lazy Merging

[SPBZ11] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research report RR-7506,
Inria – Centre Paris-Rocquencourt ; INRIA, Jan. 2011.
https://hal.inria.fr/inria-00555588

[WFSW11] K. Wieland, G. Fitzpatrick, M. Seidl, M. Wimmer. Towards an Understanding
of Requirements for Model Versioning Support. International Journal of People-
Oriented Programming 1:1–23, June 2011.
doi:10.4018/ijpop.2011070101

[WLS+12] K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel. Turning Conflicts into
Collaboration. Computer Supported Cooperative Work (CSCW) 22(2-3):181–240,
Sept. 2012.
doi:10.1007/s10606-012-9172-4

[ZNS19] P. Zweihoff, S. Naujokat, B. Steffen. Pyro: Generating Domain-Specific Collabora-
tive Online Modeling Environments. In Proc. of the 22nd Int. Conf. on Fundamental
Approaches to Software Engineering (FASE 2019). 2019.
doi:10.1007/978-3-030-16722-6 6

ISoLA DS 2022 24 / 24

https://hal.inria.fr/inria-00555588
http://dx.doi.org/10.4018/ijpop.2011070101
http://dx.doi.org/10.1007/s10606-012-9172-4
http://dx.doi.org/10.1007/978-3-030-16722-6_6

	1 Introduction
	2 Real-World Scenario
	3 Lazy Merging
	3.1 Conflicts as Variant Potentials
	3.2 Lazy Version Control
	3.3 Cell Segmentation
	3.4 Lazy Editing

	4 Recording and Aggregating Changes
	4.1 Document Causality Graphs
	4.2 Cartesian Causality Decompositions
	4.3 Cartesian Lifting

	5 Impact
	6 Related Work
	6.1 Wieland et al., 2012
	6.2 Conflict-Free Replicated Data Types (CRDTs)
	6.3 Pijul

	7 Future Work
	8 Conclusion

