
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

Validating Behavioral Requirements, Conditions, and Rules of
Autonomous Systems with Scenario-Based Testing

Till Schallau and Stefan Naujokat

21 pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

https://orcid.org/0000-0002-1769-3486
https://orcid.org/0000-0002-6265-6641
http://www.easst.org/eceasst/

ECEASST

Validating Behavioral Requirements, Conditions, and Rules of
Autonomous Systems with Scenario-Based Testing

Till Schallau1 and Stefan Naujokat2

1 till.schallau@tu-dortmund.de, 2 stefan.naujokat@tu-dortmund.de
Chair for Software Engineering

TU Dortmund University, Dortmund, Germany

Abstract: Assuring the safety of autonomous vehicles is more and more ap-
proached by using scenario-based testing. Relevant driving situations are utilized
here to fuel the argument that an autonomous vehicle behaves correctly. Many re-
cent works focus on the specification, variation, generation, and execution of in-
dividual scenarios. However, it is still an open question if operational design do-
mains, which describe the environmental conditions under which the system under
test has to function, can be assessed with scenario-based testing. In this paper, we
present open challenges and resulting research questions in the field of assuring the
safety of autonomous vehicles. We have developed a toolchain that enables us to
conduct scenario-based testing experiments based on scenario classification with
temporal logic and driving data obtained from the CARLA simulator. We discuss
the toolchain and present first results using analysis metrics like class coverage or
distribution.

Keywords: Autonomous Vehicles, Domain-Specific Languages, Scenario-based
Testing

1 Introduction

Assuring the safety of autonomous vehicles is still an open challenge [Mar18]. Especially, con-
sidering the complex environment they are operating in and the underlying vaguely defined traf-
fic rules they have to obey. In previous works, it was shown that a statistical argumentation
on the safety and performance of autonomous systems (e.g., caused fatalities per million miles,
crashes due to wrongly classified environmental objects [BZMS16], etc.) are not feasible in
practice [JWKW18, KP16]. Especially, as billions of miles have to be driven to evaluate the
functional correctness of subsystems or the whole autonomous system for each new vehicle
model or software update. Therefore, the focus of research in the last years concentrated on
assuring the safety of driving functions instead [MHR16, FKL+19].

The ISO 26262 standard [ISO18] has set the state of the art for the correct operation of au-
tonomous systems [SHFG20]. The more recent ISO 21448 standard [ISO22] describes the as-
surance of a vehicle’s safety under all environmental conditions and their triggering conditions.
Triggering conditions describe specific conditions of a scenario that may initialize hazardous
situations or prevent the system from correctly detecting required overrides of the system (e.g.,
driver input is ignored). To be more cost-efficient and not endanger traffic participants, such

1 / 21 Volume 82 (2022)

https://orcid.org/0000-0002-1769-3486
https://orcid.org/0000-0002-6265-6641
mailto:till.schallau@tu-dortmund.de
mailto:stefan.naujokat@tu-dortmund.de

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

as pedestrians, these conditions are implemented with concrete values in specialized scenar-
ios [NMB+20]. These scenarios can be described [SWT+21, UMR+15] and built [SSLM13]
using stacked layers that contain distinct and separate sets of information. Instead of testing the
system under real-world conditions, the driving functions are first evaluated using such scenario-
based testing environments. After successfully operating in these scenarios, those systems are
then undergoing real-world testing. The utilized scenarios allow for concrete situation defini-
tions that are reproducible as well as predictable. Additionally, test engineers are capable of
defining expected maneuvers and specific outcomes that can then automatically be validated.
Nevertheless, real-world tests are mandatory as they can be utilized to find relevant and critical
scenarios [KKHK19, WLFM18].

Some of the observed environmental conditions and traffic situations might not be relevant
for the driving function under test. Therefore, when developing autonomous systems, a first
step is to define a so-called operational design domain (ODD) [Cen20], in which the system’s
operating environment is defined. This includes, but is not limited to, behavioral requirements,
environmental conditions (e.g., weather, time of day, etc.), roadway features (e.g., count of lanes,
road types, traffic signs, etc.), traffic laws, regulations, and other domain concerns.

Previous works already utilized formal logic to define traffic rules for (uncontrolled) intersec-
tions [MMA22, KD20], interstate traffic [MRMA20], overtaking maneuvers [RKH+17] and for
the safe distance between vehicles [EGK20].

Extending on these approaches, we analyze the question of whether it is possible to describe
all ODD requirements logically and machine-interpretable by utilizing formal specifications of
features. This is of great importance as it would allow for automatic analyses of predefined sce-
narios. It is an open question on how suitable scenario-based testing is for evaluating autonomous
systems based on their corresponding ODD. We aim to analyze and validate this applicability and
propose to create a domain-specific language (DSL) that is capable of describing the ODD and
its logical descriptions of features, but on a more abstract level suitable for domain experts.

In this paper, these goals are formulated into three research questions, which we discuss and
bring into context. In a previous research effort [SNKH23], we introduced an extension to exist-
ing formal logics that is more expressive and presented several metrics that measure the coverage
and representativeness of a set of test scenarios based on a given specification. Here, we relate
the results from this work to our research questions, and, in particular, detail our prototype im-
plementation of a simulation and analysis toolchain to address the first two of our questions. The
implemented project is discussed and future adaptions to solve the third question are summa-
rized.

Outline The paper is structured as follows. Section 2 formulates the research questions and
reasons about them in the context of our research roadmap. Section 3 motivates our experiment
setup and outlines technical aspects of our toolchain. A short summary of the results from the
case study in [SNKH23] is given in Section 4 alongside their impact towards answering our
research questions. Future work and next steps are described in Section 5. We give an overview
of related works in Section 6 and conclude the paper in Section 7.

ISoLA DS 2022 2 / 21

ECEASST

2 Problems and Research Questions

In this section, we discuss open problems in the field of assuring the safety of autonomous
vehicles. Focusing on operational design domains, scenario-based testing, and domain-specific
languages, we sketch a research roadmap along with three research questions derived from the
discussed problems.

2.1 Formalizing Operational Design Domains

An operational design domain describes the environmental conditions under which an autono-
mous system has to operate properly. When developing new driving tasks, domain experts de-
velop suitable ODDs based on their domain knowledge and related traffic laws. The resulting
ODD documents are currently designed for the software and hardware engineers and may in-
clude informal instructions and traffic laws, such as “No motor vehicle must, without good rea-
son, travel so slowly as to impede the flow of traffic.” (§3(2) German Traffic Law - STVO1). As
this kind of requirement is too vague for automatic evaluation, machine-interpretable specifica-
tion mechanisms for operational design domains need to be developed. This results in the first
research question:

RQ 1: Is it possible to model and validate autonomous systems’ behavioral requirements,
conditions, and rules – as defined in an operational design domain – using formal logic?

Answering this research question should give insight into the value of operational design do-
mains and how they are designed for specific driving functions and whole autonomous systems.
Furthermore, we expect to gain a more detailed understanding of how far formal logics can be
utilized to define behavioral requirements and traffic rules. In this process, additions to existing
logical formalization approaches are required to fully define traffic laws and conditions. In a first
step, we imagine a manual conversion step between predefined ODDs and their corresponding
formal representations.

2.2 Utilization of Scenario-Based Testing

Given a set of machine-interpretable logical formulas describing the environmental conditions,
behaviors, and traffic rules, the question arises of how these formal specifications can be au-
tomatically validated to assure the compliance of the autonomous system with the underlying
ODD. Today, it is widely assumed that safety assurance will have to be conducted iteratively for
different driving scenarios through a combination of assurance efforts that for a particular sce-
nario can document with some certainty the safety of an autonomous vehicle [FFS+23]. It is an
open question, however, how scenario-based testing of autonomous systems in combination with
predefined ODDs is possible. From these considerations, the second research question arises:

RQ 2: Is it possible to utilize scenario-based testing to ensure that an autonomous system
fulfills the claims defined by its operational design domain?

1 https://germanlawarchive.iuscomp.org/?p=1290

3 / 21 Volume 82 (2022)

https://germanlawarchive.iuscomp.org/?p=1290

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

To be able to conclude whether an autonomous system complies with its intended domain,
some form of numerical analysis may be implemented. We imagine a set of metrics that represent
the coverage of a given set of scenarios in consideration of predefined requirements.

This benefits the testing of autonomous vehicles and their implemented driving functions, as
the expressiveness of sets of scenarios can be evaluated quantitatively and test scenarios can,
ultimately, be developed more elaborately.

2.3 Domain-Specific Rule Formalization

By finding solutions for RQ 1 and RQ 2, we can formalize the requirements of predefined ODD
specifications, which are then automatically analyzed by a scenario-based test approach. This
workflow still requires the domain experts to informally express the operational design domain
and then a logics expert to convert it into its equivalent formal specification and formulas. To
counteract this kind of error-prone workflow, which often results in multiple roundtrips between
domain experts and logics experts, we propose a third research question:

RQ 3: Is it possible to build a domain-specific language for behavioral requirements, condi-
tions, and rules that is usable by domain experts and has the required formal logic as a generation
target?

A specialized domain-specific language allows for the simultaneous development of opera-
tional design domains by domain experts and the automatic generation into a corresponding
representation as a set of logical formulas. The difficulty of this approach lies in the develop-
ment of a suitable DSL that is capable of being understandable by domain experts and expressive
enough to be formally generatable.

Furthermore, with such a domain-specific language, we enable an iterative approach of analyz-
ing and testing an autonomous system against a given ODD. By analyzing missing conditions or
violated laws, it might even be possible to automatically generate new test cases for the scenario-
based test approach.

3 Experiment Setup

Our general approach towards answering the research questions is to conduct experiments in
which we formally specify a vehicle’s requirements relative to its ODD and analyze those spec-
ifications on recordings of (for now, only simulated) scenarios. On the one hand, we aim for a
specification that is expressive enough to formally capture all relevant properties. On the other
hand, analyzing test scenarios requires some form of coverage quantification on features and
other qualitative analyses to reason about having tested the autonomous vehicle sufficiently. Each
scenario consists of a time-stamped sequence of scenes that hold all information about the ego
vehicle (i.e., the vehicle under evaluation) and its surroundings. We started building a theoretical
framework and a corresponding proof-of-concept tool pipeline to conduct our experiments. We
focus here more on the technical aspects of this tool pipeline, while the formal background of

ISoLA DS 2022 4 / 21

ECEASST

this framework is beyond the scope of this paper. We do, however, briefly present an informal
overview of the framework’s concepts and formalisms to provide an intuition for understanding
the tool pipeline. For the full formal elaboration, please refer to [SNKH23].

• We introduce Counting Metric First-Order Temporal Binding Logic (CMFTBL) as an ex-
tension to Metric First-Order Temporal Logic (MFOTL) on finite traces [Cho95, Mül09].
In particular, our extension (a) defines a minimum prevalence operator to express that a
property (or sub-formula) holds for a certain fraction of all future states (within the finite
trace), and (b) introduces a binding operator that stores an evaluation of a term into a
variable, so that the result of this evaluation can be accessed in operator contexts of future
states.

• We introduce Tree-Based Scenario Classifiers (TSCs) as a structured way to create se-
mantical groups of autonomous systems’ features. With these classifiers, we extend the
concept of defining a system’s capabilities in form of an operational design domain by
introducing structural properties reminiscent of feature model diagrams [SHT06] (e.g., in-
troducing optional and mandatory nodes). Each valid sub-structure of the classifier tree
forms a scenario class and a recording of a scenario is classified as this class if all nodes’
conditions (expressed as CMFTBL formulas) hold.

• We define multiple metrics and analyses to quantify and analyze if, and to which degree,
the recorded data covers possible scenario classes. The primary metric we are considering
is scenario class coverage, expressing the ratio between the number of observed classes
and the number of classes modeled by a TSC. To measure the individual rarity of the mod-
eled environmental conditions, we introduce a metric for absolute feature occurrence. Fur-
thermore, the scenario instance count metric determines how often a certain class has been
encountered. Complementing this information, we also identify class instance missings.
However, as gaining meaningful insights from large sets of missing classes is difficult, we
also analyze feature pair misses, i.e., pairs of TSC nodes that do not exist together in any
of the observed classes.

3.1 Tool Pipeline Overview

Our toolchain2 for generating, analyzing, and evaluating driving data is sketched in Figure 1.
Recorded driving data of simulation runs is generated by the CARLA simulator [DRC+17].
Using the spatial properties of the actors (i.e., vehicles and pedestrians) during simulation and
map data (for which CARLA relies on OpenDrive maps3), we generate two types of JSON files:
a set of driving data files (one for each simulation run) and a set of map data files (one for each
map). For each simulation run, those two types are then merged into a combined data format that
enables the direct evaluation of temporal properties. Afterwards, the merged data is – based on
the road the ego vehicle is driving on – segmented into analysis segments which are then ready
to be classified as certain scenario classes.
2 Our Kotlin framework, CARLA monitors, and experiments are available on GitHub: https://github.com/tudo-aqua/
stars, https://github.com/tudo-aqua/stars-export-carla, and https://github.com/tudo-aqua/stars-carla-experiments
3 https://www.asam.net/standards/detail/opendrive/

5 / 21 Volume 82 (2022)

https://github.com/tudo-aqua/stars
https://github.com/tudo-aqua/stars
https://github.com/tudo-aqua/stars-export-carla
https://github.com/tudo-aqua/stars-carla-experiments
https://www.asam.net/standards/detail/opendrive/

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

Driving Data

CARLA

Analysis
Segments

Segment
Classifica�ons

Scenario
Classes

Classifier
Structure

CMFTBL
Formulas

Tree-based
Scenario Classifier

Missing Predicate
Combina�ons

Class
Coverage

Feature
Distribu�on

Scenario
Distribu�ons

Merge &
Segmenta�on

Analysis

Scenario Class
Calculator

Evalua�on

OpenDrive

Map Data

Figure 1: Overview of the tool pipeline for analyzing the coverage of test scenario sets4

To facilitate the definition of scenario classifiers and their analysis, we built a Kotlin library
which allows for the definition of the classifier structure as well as their edge condition functions
and monitor functions. For those functions, we also provide a library that allows us to express
and evaluate CMFTBL formulas in Kotlin.

Given such a tree-based classifier, on the one hand, we calculate all possible scenario classes
and on the other hand, each analysis segment is classified into one of those classes according to
whether edge conditions are satisfied or not. In this case, we say that an analysis segment results
in an instance of a scenario class. Based on the observed instances, a subsequent evaluation step
calculates the class coverage statistics, identifies coverage gaps, as well as provides distributions
of scenarios and individual features.

3.2 Data Exchange Format

In our toolchain, scenario classifiers’ features are evaluated on an abstract representation of the
world, i.e., the ego vehicle and its surroundings. We have segments, each of which holds a
sequence of timestamps (called ticks) on which formulas expressed in CMFTBL are evaluated.
Our primary concept is the notion of actors (e.g., vehicles and pedestrians) that move along lanes
on roads. For each tick, we know the actors’ positions on their lanes (measured in distance from
the start of the lane), current velocities, etc., as well as additional static and dynamic information
for the lanes, like speed limits on certain parts of a lane, yield priorities between lanes, current
states of traffic lights, etc.

Figure 2 shows an excerpt from the data classes provided by our Kotlin library. Most of
the structure should be self-explanatory, so we only highlight some important concepts: as in-

4 Icons used in the figures are licensed under CC BY 4.0 https://fontawesome.com/license/free

ISoLA DS 2022 6 / 21

https://fontawesome.com/license/free

ECEASST

Figure 2: Abstract world representation used in our formulas for the TSC evaluations (excerpt)

troduced before, static and dynamic data is weaved together and segments are built by slicing
simulation runs according to the road the ego vehicle drives on. Furthermore, an actor’s po-
sition on the lane is measured from the start of the lane, i.e., actor.positionOnLane
∈ [0,actor.lane.laneLength]. Each segment is classified by the TSC as one scenario
class instance. The tickId is a timestamp measured in seconds. The list of TickData in
Segment is strictly increasing with regards to the tickId. The static data is the same for
all ticks in a segment. Traffic lights are modeled as landmarks belonging to a lane. Their cur-
rent state (i.e., which lights are on) needs to be looked up in the dynamic data according to the
id. Yield/stop signs and traffic lights are interpreted as belonging to (the end of) a lane before
entering the junction where yielding must be obeyed.

We defined various helper functions (like Lane.hasYieldSign() to check if an according
Landmark exists for this lane) to enable using those directly as conditions within our formulas.
As most of them are simple and straightforward accessors on the data structure, Fig. 2 omits
several of those functions for brevity.

This data structure is designed to potentially be constructed in various ways. Real-world
test drives using sensors, GPS information, and high-definition maps are equally addressed as
synthetic data from different simulation environments. Our evaluation methodology abstracts
from the individual challenges one faces in providing such data – in particular from real-world
test drives, which are already widely researched. We regard our generation of driving data based
on the CARLA simulator as a proof-of-concept for our approach.

3.3 Definition of Tree-Based Scenario Classifiers

We provide an internal Kotlin DSL5 to define the tree structure of a scenario classifier as well
as a framework for expressing hierarchical predicates with CMFTBL formulas that are used in
the classifier as condition and monitor functions. Please note that the developed Kotlin DSL is

7 / 21 Volume 82 (2022)

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

/** pedestrian p is on the same lane as vehicle v, and v

* is driving towards p with a distance of < 10m **/
val inReach = predicate(Pedestrian::class to Vehicle::class)
{ ctx, p, v ->
onSameLane.holds(ctx, p, v)

&& (p.positionOnLane - v.positionOnLane) in 0.0..10.0
}
/** true if at any one time stamp in the future there exists

* a pedestrian that crosses the lane right before v **/
val pedestrianCrossed = predicate(Vehicle::class)
{ ctx, v ->
eventually(v) { v ->

v.tickData.pedestrians.any { p ->
inReach.holds(ctx, p, v)

}
}

}

Listing 1: Hierarchical predicate for crossing
pedestrians

exclusive("Road Type") {
all("Junction") {

condition = { ctx -> isInJunction.holds(ctx) }
optional("Dynamic Relation") {

leaf("Pedestrian Crossed") {
condition = { ctx ->

pedestrianCrossed.holds(ctx)
}

}
leaf("Must Yield") {

condition = { ctx ->
ctx.vids.any { otherId ->

mustYield.holds(ctx, actor2Id = otherId)
}

}
monitorFunction = { ctx ->

ctx.vids.any { otherId ->
hasYielded.holds(ctx, actor2Id = otherId)

}
}

}
}

}
}

Listing 2: TSC definition excerpt with our
Kotlin DSL

currently only used for implementation means and is not intended as a proposal related to RQ 3.
Listing 1 shows an example predicate that checks whether eventually, a pedestrian crosses the

vehicle’s lane within a distance of 10.0 meters in front of the vehicle. The hierarchical nature
of the predicates can be seen with inReach being used within pedestrianCrossed. Also,
the predicate onSameLane is used in inReach, but omitted in the code excerpt for brevity.
The function predicate is a builder provided by our framework to create predicates from a
lambda function that implements its evaluation based on actor states that change over time.

Listing 2 shows an excerpt from a TSC definition containing (among others) a node for Pedes-
trian Crossed that makes use of the predicate previously discussed. For a given predicate evalu-
ation context (ctx), which is provided by the framework during analysis and contains the cur-
rently analyzed segment of tick data, the predicate can be evaluated. The keywords exclusive,
all, optional, and leaf define node types inspired by feature models and indicate how
many children the evaluation condition holds in valid classes: exactly one, all children, any
subset of children, and zero, respectively.

3.4 Scenario Class Calculator

For a given scenario classifier, to evaluate our metrics, we need to explicitly calculate all pos-
sible classes (i.e., valid sub-structures of the classifier tree) modeled by it. We have, so far, no
results regarding the decidability of whether two CMFTBL formulas are mutually exclusive (i.e.,
intersection emptiness). We thus currently require by construction of the TSC that the evaluation
conditions of a node’s children only yield a valid amount of children concerning the node type
(exclusive, all, optional, leaf). Given this restriction, we can calculate all valid classes modeled
by a TSC by combinatorically building a scenario class for each subset of the TSC’s nodes for

5 The internal Kotlin DSL for TSC definition is realized as a type-safe builder. See https://kotlinlang.org/docs/type-
safe-builders.html.

ISoLA DS 2022 8 / 21

https://kotlinlang.org/docs/type-safe-builders.html
https://kotlinlang.org/docs/type-safe-builders.html

ECEASST

which the children’s cardinalities induced by the node type are met. Actually, in our implemen-
tation, the node types introduced before are special cases of the more generic bounded node type
which explicitly defines upper and lower bounds for the children of a TSC node when building
valid classes.

3.5 Analysis of Segments

The analysis phase iterates through all segments and, for each, calculates a segment classifica-
tion in form of a TSC instance according to whether the node conditions (written as CMFTBL
formulas) hold. Instances of the same class are grouped, so that the subsequent evaluation can
easily find missings, count occurrences, etc.

3.6 Evaluation of Segment Classifications

In the evaluation phase, the previously calculated classes and gathered segment classifications
are processed. Being our main goal for the evaluation, the coverage for the TSC can now simply
be calculated as the ratio between the number of observed classes and the number of possible
classes.

Additionally, we gather various further insights from the collected data:

• Class coverage over time: We actually collect if a new scenario class has been observed
for each analyzed segment, which provides us with a curve on coverage increase over time.

• Class instance missings: As we know the set of all possible scenario classes, we can
exactly determine which ones we did not observe in our test data.

• Feature pair misses: Gaining meaningful insights from large sets of instance missings
is difficult. Therefore, we also pairwise analyze whether feature combinations of valid
classes have been observed at all and output all combinations that were missed.

• Violated monitors: In addition to the information which combinations of environmental
aspects have been observed, we check the adherence to traffic rules (such as speed limit
violations or overrun stop sign) using the monitor functions of the TSC definition. In each
TSC instance, the occurrence of monitor violations is recorded for each node.

• Absolute feature occurrence: This metric provides useful information on the rarity of
the modeled environmental conditions. Naturally, gaining high coverage in TSCs with
(potentially multiple combinations of) rare events requires an extremely high amount of
test scenarios.

• Distribution of instance counts: As we collect all segment classifications, we can count
for each class how often it was observed in the test data. This directly corresponds to the
rarity of the individual events.

9 / 21 Volume 82 (2022)

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

4 Preliminary Results

Using the framework described in Section 3, we formalized environmental conditions, rules,
and requirements (that could be part of operational design domains) as a tree-based classifier
and showed that high coverage is achievable using scenario-based testing. In the following, we
summarize the results of the case study, which is described in detail in [SNKH23].

To construct a tree-based classifier for our case study, we evaluated the 6-layer approach of
Scholtes et al. [SWT+21]. The six layers are summarized as: Layer 1 - Road Network and
Traffic Guidance Objects, Layer 2 - Roadside Structures, Layer 3 - Temporary Modifications
of L1 and L2, Layer 4 - Dynamic Objects, Layer 5 - Environmental Conditions and Layer 6 -
Digital Information. This resulted in the TSC displayed in Figure 3. Here, each path from the
root to a leaf node represents a specific environmental condition. As described in Section 3.4,
valid classes are calculated combinatorically, so that combining all nodes of the proposed TSC
yields a large set of possible classes. However, some combinations of nodes (i.e., conditions)
may never occur or are not of interest. We, therefore, split this TSC into several projections
defining interesting node combinations. As the primary criterion for these projections, we chose
the specific layers of the 6-layer approach. To fit all projections into one Figure, we introduce
colored markings attached to nodes. Each classifier is marked by its own color. Full circles
include this node and all child nodes recursively. Consequently, the full TSC classifier contains
all nodes of the TSC in Figure 3. Half-filled circles only include the node they are attached
to without recursively including child nodes automatically (i.e., if certain child nodes need to
be included, they require a marking on their own). The classifier layer (4)+5 therefore only
includes Weather, Traffic Density and Time of Day and all their children. All edges define logical
formulas as conditions on whether to include their target nodes. Formula ϕ in Figure 3, for
example, is used to detect a lane change for a given vehicle v, by utilizing our binding operator.
We bind the lane of vehicle v at the first evaluation time stamp to a new variable l. As the vehicle
v progresses in time and might change its lane, we can compare its lane value to l to detect a
lane change. The formula is defined as: changedLane(v) :=↓v.lane

l

(
♢(l ̸= v.lane)

)
. As usual, ⊤

represents the boolean true constant, and unlabeled edges’ conditions were implemented, but are
not presented here in detail.

To obtain test scenario data for evaluating the TSCs from our case study, we generated driving
data by recording CARLA’s autonomous driving simulation vehicles. Figure 4 shows our results
for the scenario class coverage for each classifier throughout analyzed segments. In our experi-
ments, we generated driving data from 100 simulations of 5 minutes, each with 200 autonomous
vehicles and 30 pedestrians. Subsequently treating each of the 200 vehicles as the ego vehicle
and segmentation according to the road the ego drives on, this resulted in 113,767 analyzable
segments of at least 5 seconds in length. For our experiments, in addition to six classifiers that are
based on the layers of information described in [SWT+21], we define an additional classifier that
is dedicated to pedestrians as well as a full combinatorial classifier containing all properties (i.e.,

full TSC). Analysis of the data behind Figure 4 shows that the classifier layer 1+2 reaches
full coverage after 12,233 analyzed segments. The next closely fully covered classifier reaches a
coverage of 97% after 59,409 analyzed segments. The next three classifiers reach coverages of
90%, 72%, and 48%, respectively, and show a similar flattening curve as the others. As already
discussed above, the full combination of all TSC nodes creates a large set of classes. The feature

ISoLA DS 2022 10 / 21

ECEASST

Root (A)

Time of Day (X)
Noon
Sunset

Traffic Density (X)
Low

Middle
High

Road Type (X)

Multi-Lane (A)

Stop Type (0..1) Has Rel. Red Light

Maneuver (X)
Lane Follow
Lane Change

Dynamic Relation (O)

Pedestrian Crossed
Overtaking

Oncoming Traffic
Following Leading Vehicle

Single-Lane (A)

Dynamic Relation (O)
Pedestrian Crossed

Oncoming Traffic
Following Leading Vehicle

Stop Type (0..1)
Has Rel. Red Light

Has Yield Sign
Has Stop Sign

Junction (A)

Maneuver (X)
Left Turn

Right Turn
Lane Follow

Dynamic Relation (O)
Must Yield

Pedestrian Crossed
Following Leading Vehicle

Weather (X)

Clear
Cloudy

Wet
Wet Cloudy
Soft Rain
Mid Rain
Hard Rain

⊤

⊤

⊤

⊤

⊤ ¬ϕ

ϕ

⊤

⊤

⊤

Figure 3: This figure shows the full classifier structure used for the analyses in [SNKH23].
Hereby, edge labels reference the related logical formula that is deciding whether an edge is
taken. We use the following classifiers:

full TSC, layer 1+2, layer 4, layer 1+2+4, layer (4)+5 and pedestrian.

0

50
,00

0

10
0,0

00
0

20

40

60

80

100

analysis segment index

sc
en
ar
io

cl
as
s
co
ve
ra
ge

(i
n
%
)

full TSC (1338/5040)

layer 1+2 (11/11)

layer 4 (70/96)

layer 1+2+4 (175/360)

layer (4)+5 (41/42)

pedestrian (76/84)

Figure 4: Scenario class coverage over the course of the 113,767 scene sequences. Figure taken
from [SNKH23]

11 / 21 Volume 82 (2022)

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

combinations that are not possible have an exponential impact on the missed classes. Thus, with
1.338 observed of 5.040 possible classes, the full TSC projection can only achieve a coverage
of 26%.

These results have shown that our formal logic can be used to formalize relevant properties of
common driving situations. Furthermore, we have shown that for sensibly constructed scenario
classifiers, a high scenario class coverage is achievable. Additionally implemented analysis tools
allowed us to analyze the evaluation results regarding property combination occurrences and
overall missing property occurrences.

Considering our research questions, we are confident that it is possible to model environmental
requirements, conditions, and traffic rules using formal logic. Furthermore, we have shown that
scenario-based testing is capable of validating structured combinations of conditions which are
formally defined. These two factors are already partly answering RQ 1 and RQ 2. Which parts
are missing and how we aim to solve them, is outlined in the following section.

5 Next steps

With the developed framework at hand, we are capable of analyzing driving data which is gener-
ated by the CARLA simulator. Automatically generated driving data can be useful for a proof-
of-concept evaluation. Nevertheless, the generated data is currently limited to urban traffic and
we still have to consider interstate traffic and additional urban cases (e.g., support for additional
traffic signs, recognition of jaywalking, etc.). Besides missing traffic scenarios, our framework
is only evaluated on automatically generated driving data. Figure 5 shows some planned exten-
sions to the landscape of our experimental setup to further improve and validate our framework.
We plan to include support for additional map formats, like Lanelet 2 [PPJ+18] or OpenStreet
Map [Ben10]. Supporting these formats also allows us to analyze existing datasets of test scenar-
ios, such as the INTERACTION dataset [ZSW+19], which contains real-world driving data, or
the CommonRoad scenario set [AKM17], a collection of several thousand handcrafted scenarios.
By analyzing such datasets, we can improve our framework and yield insights into the datasets
that might be useful for its users, as we are capable of automatically labeling the included scenar-
ios by our classifiers. Generating driving data is done easily with simulators, but our framework
should eventually be evaluated and tested on real-world driving data. In contrast to generated
and simulation-based driving data, real-world driving data is fuzzy, as the installed sensors usu-
ally do not yield optimal measurements, or neural network-based object recognition might fail.
It is important to test the automatic analysis of formally defined environmental conditions on
imperfect data to be able to reason about the limits of the approach.

Currently, we have not started developing solutions regarding RQ 3. We plan to develop a
specialized domain-specific language that is suitable for domain experts and uses CMFTBL for-
mulas as its generation target. We envision including our DSL as a plugin to the stiEF method-
ology [BSH+19] which is based on JetBrains MPS6. It aims at creating an iterative workflow
for multilingual scenario descriptions and their generation into usable scenario definitions with
concrete simulation parameters. After developing and deploying the DSL, we plan to research
scenario synthesis to close the loop, as displayed in Figure 5: Based on the analysis of scenar-

6 https://www.jetbrains.com/mps/

ISoLA DS 2022 12 / 21

https://www.jetbrains.com/mps/

ECEASST

Driving Data

CARLA

Analysis
Segments

Tree-based
Scenario Classifier

Missing Predicate
Combina�ons

Class
Coverage

Feature
Distribu�on

Scenario
Distribu�ons

Merge &
Segmenta�on

OpenDrive

Map Data

Classifier
Structure

CMFTBL
Formulas

Segment
Classifica�ons

Scenario
Classes

Analysis

Scenario Class
Calculator

Evalua�on

INTERACTION
dataset

Real Driving
Data

Scenario
Synthesis

Lanelet 2 OpenStreet
Map

Figure 5: Overview of the next additions to the framework of Figure 1 marked in blue7

ios, we are capable of calculating missing combinations of conditions and can reason about the
observed infrastructure and environmental conditions of the analyzed set of scenarios. With this
information, it might be possible to automatically synthesize new scenario definitions, which can
then be simulated using the CARLA simulator. One goal would be to create such a workflow
loop to increase the diversity and expressiveness of sets of scenarios.

The last missing step in fully answering our research questions is the combination of the
knowledge gained from RQ 2 and RQ 3 to test our framework with predefined operational design
domains. To achieve this, we plan to adapt ODDs from official regulations, or use already defined
ODDs, such as those defined by the European Union [The22].

6 Related Work

This section provides an overview of related works that pertain to our approach, including for-
malizing traffic scenarios, scenario-based testing, real-world data analysis, as well as coverages
and metrics.

Formalizing traffic scenarios. In previous research, various formal logics have been used to de-
fine specific scenario rules for traffic regulations. For instance, Esterle et al. utilized Linear Tem-
poral Logic to formalize traffic rules for highway situations [EGK20]. Rizaldi et al. [RKH+17]
also employed Linear Temporal Logic to formalize German overtaking rules and provided ver-
ified checkers that can determine if a specific trace satisfies the defined Linear Temporal Logic
formulas. Other researchers have utilized Metric Temporal Logic to formalize similar traffic
rules, such as for interstate [MRMA20] and intersection traffic [MMA22]. These formalizations
include traffic rules for general traffic, such as safe distance to preceding vehicles, unnecessary
braking, maximum speed limits, and traffic flow. Additionally, Karimi and Duggirala described

7 Icons used in the figures are licensed under CC BY 4.0 https://fontawesome.com/license/free

13 / 21 Volume 82 (2022)

https://fontawesome.com/license/free

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

traffic rules for uncontrolled intersections using Answer Set Programming [KD20]. Their rules
specify the expected behavior of traffic participants concerning right-of-way at unprotected in-
tersections, which can be challenging as there are no yield or stop signs.

Scenario-based Testing. Recent studies have focused on scenario-based safety assurance for
autonomous vehicles, primarily through testing. Scenario-based testing spans multiple different
research aspects, such as defining [WBK+19], specifying, instantiating, executing [DRC+17],
and generation of scenarios [RKKS17], as well as mining scenarios from real-world data, test
automation [SZZ+22], creating similarity notions between scenarios [ZFYZ21], and identify-
ing critical test scenarios [ANBS18]. To support these aspects, Steimle et al. [SMM21] have
provided a taxonomy and definitions of terms for scenario-based development and testing. Ad-
ditionally, Ulbrich et al. [UMR+15] defined a scenario as a sequence of scenes, with a scene
representing a snapshot of a vehicle’s environment. Klischat and Althoff [KA19] generated crit-
ical tests that can be used for regression testing.

Generally, scenarios can be categorized as functional, logical, and concrete [MBM18]. Func-
tional scenarios refer to the description of entities in a domain and their semantic relations, while
logical scenarios represent entities and their relationships using parameter ranges. Concrete
scenarios, on the other hand, are specific instances of tempo-spatial structures with fixed param-
eters. These concepts are broadly accepted in industry and academia and serve as a framework
for defining objectives and challenges. Menzel et al. use these concepts to transform a keyword-
based scenario description into simulation formats [MBI+19]. Elster et al. utilize sensor model
knowledge for their definitions of logical scenarios [ELR+21].

Zhang et al. [ZWZZ20] and Medrano-Berumen and Akbas [MA19] have addressed the gen-
eration of scenarios from semantic primitives and the development of appropriate primitives.
The former generates collision-free traffic scenarios by employing extracted traffic primitives
to describe road shapes, which can be used to create additional scenarios. Similarly, the latter
generates roadways by connecting building blocks, i.e., geometric primitives.

Analyzing Real-World Data. Scenario-based testing is widely accepted for testing autonomous
systems, but it is important to complement it with evaluations on real-world data [WLFM18].
Real-world data can help to identify critical traffic scenarios that can be used to develop scenarios
for scenario-based testing [BOS16] and provide the necessary parameter ranges [MBM18] . Ad-
ditionally, real-world data can assist in understanding how human drivers perceive autonomous
system failures in real-world situations [DB16]. Real-world data also has other applications,
such as decision-making [FV11], pedestrian intention estimation [AMS+20], and object detec-
tion [LCW+22]. However, simulation data should always be used alongside real-world data, as
it can model situations that may not be feasible in the real world, such as accidents [LBR+18].

Coverage and Metrics. When it comes to scenario-based testing, a notable challenge emerges
in effectively attaining coverage and ensuring the relevance of a scenario set [DMPR18]. Laurent
et al. [LKA+22] propose a coverage criterion for assessing the sufficiency of a test set by con-
sidering the parameters used in the decision-making process of autonomous systems. Langner
et al. automatically detect novel traffic scenarios using a machine-learning approach [LBR+18].
Using this, they can reduce a given test set to unique test scenarios. A test-ending criterion aimed
at establishing the safety of automated and autonomous driving systems is proposed by Hauer et
al. [HSHP19].

ISoLA DS 2022 14 / 21

ECEASST

Closest to ours are the following two works: Amersbach and Winner proposed an approach
to calculate the necessary number of concrete scenarios based on the given parameter ranges to
achieve scenario coverage. They emphasized the importance of developing a specification of
functional scenarios, such as lane change and following, for validating highly automated vehi-
cles [AW19].

Li et al. [LCS+22] present an approach for generating abstract scenarios to maximize the
coverage of k-way combinatorial testing. The resulting abstract scenarios can be regarded as
equivalence classes, each of which is associated with a set of concrete scenarios. The categories
used to generate the abstract scenarios, such as weather, road type, and ego-action, are similar to
the scenario classifiers employed in our previous work [SNKH23].

7 Conclusion

In this paper, we analyzed the current state of assuring the safety of autonomous vehicles, listed
current open problems, and used these to derive three research questions. Following these ques-
tions, we introduced our framework to model and analyze classes of scenarios with a tree-based
classifier. The framework automatically calculates scenario class coverage, feature occurrences,
violated monitors, and distributions of these metrics for scenario-based test sets using temporal
logic formulas that are based on a set of behavioral requirements, conditions, and rules. We were
able to show that using simulation-based generation of test scenarios, high scenario class cov-
erage is achievable. The development of our framework and its results already contribute to the
first two research questions. Nevertheless, open questions are still remaining, especially regard-
ing the evaluation of the potential of our proposed framework. Finally, we outlined our next steps
towards fully answering the remaining parts of the research questions and proposed a workflow
which allows for automatic generation of test scenarios to fulfill some coverage criterion.

Bibliography

[AKM17] M. Althoff, M. Koschi, S. Manzinger. CommonRoad: Composable benchmarks
for motion planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV).
Pp. 719–726. IEEE, June 2017.
doi:10.1109/ivs.2017.7995802

[AMS+20] W. M. Alvarez, F. M. Moreno, O. Sipele, N. Smirnov, C. Olaverri-Monreal. Au-
tonomous Driving: Framework for Pedestrian Intention Estimation in a Real World
Scenario. In 2020 IEEE Intelligent Vehicles Symposium (IV). Pp. 39–44. IEEE, Oct.
2020.
doi:10.1109/iv47402.2020.9304624

[ANBS18] R. B. Abdessalem, S. Nejati, L. C. Briand, T. Stifter. Testing vision-based control
systems using learnable evolutionary algorithms. In Proceedings of the 40th Inter-
national Conference on Software Engineering. ICSE ’18, pp. 1016–1026. ACM,
May 2018.
doi:10.1145/3180155.3180160

15 / 21 Volume 82 (2022)

http://dx.doi.org/10.1109/ivs.2017.7995802
http://dx.doi.org/10.1109/iv47402.2020.9304624
http://dx.doi.org/10.1145/3180155.3180160

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

[AW19] C. Amersbach, H. Winner. Defining Required and Feasible Test Coverage for
Scenario-Based Validation of Highly Automated Vehicles. In 2019 IEEE Intelli-
gent Transportation Systems Conference (ITSC). Pp. 425–430. IEEE, Oct. 2019.
doi:10.1109/itsc.2019.8917534

[Ben10] J. Bennett. OpenStreetMap. Packt Publishing Ltd, 2010.

[BOS16] J. Bach, S. Otten, E. Sax. Model based scenario specification for development and
test of automated driving functions. In 2016 IEEE Intelligent Vehicles Symposium
(IV). Pp. 1149–1155. IEEE, June 2016.
doi:10.1109/ivs.2016.7535534

[BSH+19] F. Bock, C. Sippl, A. Heinz, C. Lauer, R. German. Advantageous Usage of Textual
Domain-Specific Languages for Scenario-Driven Development of Automated Driv-
ing Functions. In 2019 IEEE International Systems Conference (SysCon). Pp. 1–8.
IEEE, Apr. 2019.
doi:10.1109/syscon.2019.8836912

[BZMS16] M. Bunting, Y. Zeleke, K. McKeever, J. Sprinkle. A Safe Autonomous Vehicle
Trajectory Domain Specific Modeling Language for Non-Expert Development. In
Proceedings of the International Workshop on Domain-Specific Modeling. DSM
2016, pp. 42–48. ACM, Oct. 2016.
doi:10.1145/3023147.3023154

[Cen20] Centre for Connected & Autonomous Vehicles. Operational Design Domain (ODD)
taxonomy for an automated driving system (ADS) - Specification. Specifica-
tion PAS 1883:2020, The British Standards Institution, Aug. 2020.
https://www.bsigroup.com/globalassets/localfiles/en-gb/cav/pas1883.pdf

[Cho95] J. Chomicki. Efficient checking of temporal integrity constraints using bounded his-
tory encoding. ACM Transactions on Database Systems 20(2):149–186, June 1995.
doi:10.1145/210197.210200

[DB16] M. Dikmen, C. M. Burns. Autonomous Driving in the Real World: Experiences
with Tesla Autopilot and Summon. In Proceedings of the 8th International Confer-
ence on Automotive User Interfaces and Interactive Vehicular Applications. Auto-
motive’UI 16, pp. 225–228. ACM, Oct. 2016.
doi:10.1145/3003715.3005465

[DMPR18] W. Damm, E. Möhlmann, T. Peikenkamp, A. Rakow. A Formal Semantics for Traf-
fic Sequence Charts. In Principles of Modeling. Lecture Notes in Computer Science,
pp. 182–205. Springer International Publishing, 2018.
doi:10.1007/978-3-319-95246-8 11

[DRC+17] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun. CARLA: An Open
Urban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot
Learning. Proceedings of Machine Learning Research 78, pp. 1–16. PMLR, Oct.

ISoLA DS 2022 16 / 21

http://dx.doi.org/10.1109/itsc.2019.8917534
http://dx.doi.org/10.1109/ivs.2016.7535534
http://dx.doi.org/10.1109/syscon.2019.8836912
http://dx.doi.org/10.1145/3023147.3023154
https://www.bsigroup.com/globalassets/localfiles/en-gb/cav/pas1883.pdf
http://dx.doi.org/10.1145/210197.210200
http://dx.doi.org/10.1145/3003715.3005465
http://dx.doi.org/10.1007/978-3-319-95246-8_11

ECEASST

2017.
https://proceedings.mlr.press/v78/dosovitskiy17a.html

[EGK20] K. Esterle, L. Gressenbuch, A. Knoll. Formalizing Traffic Rules for Machine In-
terpretability. In 2020 IEEE 3rd Connected and Automated Vehicles Symposium
(CAVS). Pp. 1–7. Nov. 2020.
doi:10.1109/CAVS51000.2020.9334599

[ELR+21] L. Elster, C. Linnhoff, P. Rosenberger, S. Schmidt, R. Stark, H. Winner. Fundamen-
tal Design Criteria for Logical Scenarios in Simulation-based Safety Validation of
Automated Driving Using Sensor Model Knowledge. In 2021 IEEE Intelligent Ve-
hicles Symposium Workshops (IV Workshops). Pp. 209–214. IEEE, July 2021.
doi:10.1109/ivworkshops54471.2021.9669207

[FFS+23] F. Favaro, L. Fraade-Blanar, S. Schnelle, T. Victor, M. Peña, J. Engstrom, J. Scan-
lon, K. Kusano, D. Smith. Building a Credible Case for Safety: Waymo’s Approach
for the Determination of Absence of Unreasonable Risk. Technical report, arXiv,
June 2023.
doi:10.48550/arXiv.2306.01917

[FKL+19] H. Felbinger, F. Kluck, Y. Li, M. Nica, J. Tao, F. Wotawa, M. Zimmermann. Com-
paring two systematic approaches for testing automated driving functions. In 2019
IEEE International Conference on Connected Vehicles and Expo (ICCVE). Pp. 1–6.
IEEE, Nov. 2019.
doi:10.1109/iccve45908.2019.8965209

[FV11] A. Furda, L. Vlacic. Enabling Safe Autonomous Driving in Real-World City Traffic
Using Multiple Criteria Decision Making. IEEE Intelligent Transportation Systems
Magazine 3(1):4–17, Apr. 2011.
doi:10.1109/mits.2011.940472

[HSHP19] F. Hauer, T. Schmidt, B. Holzmüller, A. Pretschner. Did We Test All Scenarios for
Automated and Autonomous Driving Systems? In 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC). Pp. 2950–2955. IEEE, Oct. 2019.
doi:10.1109/itsc.2019.8917326

[ISO18] ISO Central Secretary. Road vehicles - Functional safety - Part 1: Vocabulary. Stan-
dard ISO 26262-1:2018, International Organization for Standardization, Dec. 2018.
https://www.iso.org/standard/68383.html

[ISO22] ISO Central Secretary. Road vehicles - Safety of the intended functionality. Stan-
dard ISO 21448:2022, International Organization for Standardization, June 2022.
https://www.iso.org/standard/77490.html

[JWKW18] P. Junietz, W. Wachenfeld, K. Klonecki, H. Winner. Evaluation of Different Ap-
proaches to Address Safety Validation of Automated Driving. In 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC). Pp. 491–496.

17 / 21 Volume 82 (2022)

https://proceedings.mlr.press/v78/dosovitskiy17a.html
http://dx.doi.org/10.1109/CAVS51000.2020.9334599
http://dx.doi.org/10.1109/ivworkshops54471.2021.9669207
http://dx.doi.org/10.48550/arXiv.2306.01917
http://dx.doi.org/10.1109/iccve45908.2019.8965209
http://dx.doi.org/10.1109/mits.2011.940472
http://dx.doi.org/10.1109/itsc.2019.8917326
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/77490.html

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

IEEE, Nov. 2018.
doi:10.1109/itsc.2018.8569959

[KA19] M. Klischat, M. Althoff. Generating Critical Test Scenarios for Automated Vehicles
with Evolutionary Algorithms. In 2019 IEEE Intelligent Vehicles Symposium (IV).
Pp. 2352–2358. IEEE, June 2019.
doi:10.1109/ivs.2019.8814230

[KD20] A. Karimi, P. S. Duggirala. Formalizing traffic rules for uncontrolled intersections.
In 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (IC-
CPS). Pp. 41–50. IEEE, Apr. 2020.
doi:10.1109/iccps48487.2020.00012

[KKHK19] L. Klitzke, C. Koch, A. Haja, F. Köster. Real-world Test Drive Vehicle Data Man-
agement System for Validation of Automated Driving Systems. In Proceedings of
the 5th International Conference on Vehicle Technology and Intelligent Transport
Systems - VEHITS. Pp. 171–180. SciTePress, May 2019.
doi:10.5220/0007720501710180

[KP16] N. Kalra, S. M. Paddock. Driving to safety: How many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transportation Research Part
A: Policy and Practice 94:182–193, Dec. 2016.
doi:10.1016/j.tra.2016.09.010

[LBR+18] J. Langner, J. Bach, L. Ries, S. Otten, M. Holzapfel, E. Sax. Estimating the Unique-
ness of Test Scenarios derived from Recorded Real-World-Driving-Data using Au-
toencoders. In 2018 IEEE Intelligent Vehicles Symposium (IV). Pp. 1860–1866.
IEEE, June 2018.
doi:10.1109/ivs.2018.8500464

[LCS+22] C. Li, C.-H. Cheng, T. Sun, Y. Chen, R. Yan. ComOpT: Combination and Optimiza-
tion for Testing Autonomous Driving Systems. In 2022 International Conference on
Robotics and Automation (ICRA). Pp. 7738–7744. IEEE, May 2022.
doi:10.1109/icra46639.2022.9811794

[LCW+22] K. Li, K. Chen, H. Wang, L. Hong, C. Ye, J. Han, Y. Chen, W. Zhang, C. Xu, D.-Y.
Yeung, X. Liang, Z. Li, H. Xu. CODA: A Real-World Road Corner Case Dataset
for Object Detection in Autonomous Driving. In Computer Vision - ECCV 2022.
Lecture Notes in Computer Science, pp. 406–423. Springer Nature Switzerland,
Oct. 2022.
doi:10.1007/978-3-031-19839-7 24

[LKA+22] T. Laurent, S. Klikovits, P. Arcaini, F. Ishikawa, A. Ventresque. Parameter Coverage
for Testing of Autonomous Driving Systems Under Uncertainty. ACM Transactions
on Software Engineering and Methodology 32(3):58:1–58:31, Apr. 2022.
doi:10.1145/3550270

ISoLA DS 2022 18 / 21

http://dx.doi.org/10.1109/itsc.2018.8569959
http://dx.doi.org/10.1109/ivs.2019.8814230
http://dx.doi.org/10.1109/iccps48487.2020.00012
http://dx.doi.org/10.5220/0007720501710180
http://dx.doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.1109/ivs.2018.8500464
http://dx.doi.org/10.1109/icra46639.2022.9811794
http://dx.doi.org/10.1007/978-3-031-19839-7_24
http://dx.doi.org/10.1145/3550270

ECEASST

[MA19] C. Medrano-Berumen, M. I. Akbas. Abstract Simulation Scenario Generation for
Autonomous Vehicle Verification. In 2019 SoutheastCon. Pp. 1–6. IEEE, Apr. 2019.
doi:10.1109/southeastcon42311.2019.9020575

[Mar18] R. Mariani. An overview of autonomous vehicles safety. In 2018 IEEE International
Reliability Physics Symposium (IRPS). Pp. 6A.1–1–6A.1–6. IEEE, Mar. 2018.
doi:10.1109/irps.2018.8353618

[MBI+19] T. Menzel, G. Bagschik, L. Isensee, A. Schomburg, M. Maurer. From Functional to
Logical Scenarios: Detailing a Keyword-Based Scenario Description for Execution
in a Simulation Environment. In 2019 IEEE Intelligent Vehicles Symposium (IV).
Pp. 2383–2390. IEEE, June 2019.
doi:10.1109/ivs.2019.8814099

[MBM18] T. Menzel, G. Bagschik, M. Maurer. Scenarios for Development, Test and Vali-
dation of Automated Vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV).
Pp. 1821–1827. IEEE, June 2018.
doi:10.1109/IVS.2018.8500406

[MHR16] M. Mauritz, F. Howar, A. Rausch. Assuring the Safety of Advanced Driver Assis-
tance Systems Through a Combination of Simulation and Runtime Monitoring. In
Leveraging Applications of Formal Methods, Verification and Validation: Discus-
sion, Dissemination, Applications. Lecture Notes in Computer Science, pp. 672–
687. Springer International Publishing, Oct. 2016.
doi:10.1007/978-3-319-47169-3 52

[MMA22] S. Maierhofer, P. Moosbrugger, M. Althoff. Formalization of Intersection Traf-
fic Rules in Temporal Logic. In 2022 IEEE Intelligent Vehicles Symposium (IV).
Pp. 1135–1144. IEEE, June 2022.
doi:10.1109/iv51971.2022.9827153

[MRMA20] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, M. Althoff. Formalization of Interstate
Traffic Rules in Temporal Logic. In 2020 IEEE Intelligent Vehicles Symposium (IV).
Pp. 752–759. IEEE, Oct. 2020.
doi:10.1109/iv47402.2020.9304549

[Mül09] S. Müller. Theory and Applications of Runtime Monitoring Metric First-order Tem-
poral Logic. PhD thesis, ETH Zurich, 2009.
doi:10.3929/ethz-a-005932651

[NMB+20] D. Nalic, T. Mihalj, M. Bäumler, M. Lehmann, A. Eichberger, S. Bernsteiner. Sce-
nario Based Testing of Automated Driving Systems: A Literature Survey. In Pro-
ceedings of the FISITA Web Congress 2020. Oct. 2020.
https://www.fisita.com/library/fisita-world-congress/2020/f2020-acm-096

[PPJ+18] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, M. Mayr.
Lanelet2: A high-definition map framework for the future of automated driving. In

19 / 21 Volume 82 (2022)

http://dx.doi.org/10.1109/southeastcon42311.2019.9020575
http://dx.doi.org/10.1109/irps.2018.8353618
http://dx.doi.org/10.1109/ivs.2019.8814099
http://dx.doi.org/10.1109/IVS.2018.8500406
http://dx.doi.org/10.1007/978-3-319-47169-3_52
http://dx.doi.org/10.1109/iv51971.2022.9827153
http://dx.doi.org/10.1109/iv47402.2020.9304549
http://dx.doi.org/10.3929/ethz-a-005932651
https://www.fisita.com/library/fisita-world-congress/2020/f2020-acm-096

Validating Behavioral Requirements, Conditions, and Rules of Autonomous Systems

2018 21st International Conference on Intelligent Transportation Systems (ITSC).
Pp. 1672–1679. IEEE, Nov. 2018.
doi:10.1109/itsc.2018.8569929

[RKH+17] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, E. Hilgendorf,
T. Nipkow. Formalising and Monitoring Traffic Rules for Autonomous Vehicles in
Isabelle/HOL. In Integrated Formal Methods. Lecture Notes in Computer Science,
pp. 50–66. Springer International Publishing, Aug. 2017.
doi:10.1007/978-3-319-66845-1 4

[RKKS17] E. Rocklage, H. Kraft, A. Karatas, J. Seewig. Automated scenario generation for re-
gression testing of autonomous vehicles. In 2017 IEEE 20th International Confer-
ence on Intelligent Transportation Systems (ITSC). Pp. 476–483. IEEE, Oct. 2017.
doi:10.1109/itsc.2017.8317919

[SHFG20] A. K. Saberi, J. Hegge, T. Fruehling, J. F. Groote. Beyond SOTIF: Black Swans and
Formal Methods. In 2020 IEEE International Systems Conference (SysCon). Pp. 1–
5. IEEE, Aug. 2020.
doi:10.1109/SysCon47679.2020.9275888

[SHT06] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux. Feature Diagrams: A Survey and a
Formal Semantics. In 14th IEEE International Requirements Engineering Confer-
ence (RE'06). Pp. 139–148. IEEE, Sept. 2006.
doi:10.1109/re.2006.23

[SMM21] M. Steimle, T. Menzel, M. Maurer. Toward a Consistent Taxonomy for Scenario-
Based Development and Test Approaches for Automated Vehicles: A Proposal for
a Structuring Framework, a Basic Vocabulary, and Its Application. IEEE Access
9:147828–147854, Oct. 2021.
doi:10.1109/access.2021.3123504

[SNKH23] T. Schallau, S. Naujokat, F. Kullmann, F. Howar. Tree-Based Scenario Classifica-
tion: A Formal Framework for Coverage Analysis on Test Drives of Autonomous
Vehicles. arXiv preprint, July 2023.
doi:10.48550/arXiv.2307.05106

[SSLM13] F. Schuldt, F. Saust, B. Lichte, M. Maurer. Effiziente systematische Testgenerierung
für Fahrerassistenzsysteme in virtuellen Umgebungen. Technical report, Institut für
Regelungstechnik, TU Braunschweig, 2013.
doi:10.24355/dbbs.084-201307101421-0

[SWT+21] M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes, H. Weber, N. Wa-
gener, C. Neurohr, M. H. Bollmann, F. Kortke, J. Hiller, M. Hoss, J. Bock, L. Eck-
stein. 6-Layer Model for a Structured Description and Categorization of Urban Traf-
fic and Environment. IEEE Access 9:59131–59147, 2021.
doi:10.1109/access.2021.3072739

ISoLA DS 2022 20 / 21

http://dx.doi.org/10.1109/itsc.2018.8569929
http://dx.doi.org/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1109/itsc.2017.8317919
http://dx.doi.org/10.1109/SysCon47679.2020.9275888
http://dx.doi.org/10.1109/re.2006.23
http://dx.doi.org/10.1109/access.2021.3123504
http://dx.doi.org/10.48550/arXiv.2307.05106
http://dx.doi.org/10.24355/dbbs.084-201307101421-0
http://dx.doi.org/10.1109/access.2021.3072739

ECEASST

[SZZ+22] J. Sun, H. Zhang, H. Zhou, R. Yu, Y. Tian. Scenario-Based Test Automation for
Highly Automated Vehicles: A Review and Paving the Way for Systematic Safety
Assurance. IEEE Transactions on Intelligent Transportation Systems 23(9):14088–
14103, Sept. 2022.
doi:10.1109/tits.2021.3136353

[The22] The European Commission. Commission Implementing Regulation (EU)
2022/1426 of 5 August 2022 laying down rules for the application of Regu-
lation (EU) 2019/2144 of the European Parliament and of the Council as regards
uniform procedures and technical specifications for the type-approval of the
automated driving system (ADS) of fully automated vehicles. Offical Journal of
the European Union 65(L 221):1–64, Aug. 2022.
http://data.europa.eu/eli/reg impl/2022/1426/oj

[UMR+15] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, M. Maurer. Defining and Substantiat-
ing the Terms Scene, Situation, and Scenario for Automated Driving. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems. Pp. 982–988.
IEEE, Sept. 2015.
doi:10.1109/itsc.2015.164

[WBK+19] H. Weber, J. Bock, J. Klimke, C. Roesener, J. Hiller, R. Krajewski, A. Zlocki,
L. Eckstein. A framework for definition of logical scenarios for safety assurance
of automated driving. Traffic Injury Prevention 20(sup1):S65–S70, June 2019.
doi:10.1080/15389588.2019.1630827

[WLFM18] H. Winner, K. Lemmer, T. Form, J. Mazzega. PEGASUS—First Steps for the Safe
Introduction of Automated Driving. In Road Vehicle Automation 5. Lecture Notes
in Mobility, pp. 185–195. Springer International Publishing, June 2018.
doi:10.1007/978-3-319-94896-6 16

[ZFYZ21] J. Zhao, J. Fang, Z. Ye, L. Zhang. Large Scale Autonomous Driving Scenarios
Clustering with Self-supervised Feature Extraction. In 2021 IEEE Intelligent Vehi-
cles Symposium (IV). Pp. 473–480. IEEE, July 2021.
doi:10.1109/iv48863.2021.9575644

[ZSW+19] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle,
H. Konigshof, C. Stiller, A. de La Fortelle, M. Tomizuka. INTERACTION Dataset:
An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive
Driving Scenarios with Semantic Maps. Technical report, arXiv, Sept. 2019.
doi:10.48550/arXiv.1910.03088

[ZWZZ20] W. Zhang, W. Wang, J. Zhu, D. Zhao. Multi-Vehicle Interaction Scenarios Genera-
tion with Interpretable Traffic Primitives and Gaussian Process Regression. In 2020
IEEE Intelligent Vehicles Symposium (IV). Pp. 1197–1204. IEEE, Oct. 2020.
doi:10.1109/iv47402.2020.9304568

21 / 21 Volume 82 (2022)

http://dx.doi.org/10.1109/tits.2021.3136353
http://data.europa.eu/eli/reg_impl/2022/1426/oj
http://dx.doi.org/10.1109/itsc.2015.164
http://dx.doi.org/10.1080/15389588.2019.1630827
http://dx.doi.org/10.1007/978-3-319-94896-6_16
http://dx.doi.org/10.1109/iv48863.2021.9575644
http://dx.doi.org/10.48550/arXiv.1910.03088
http://dx.doi.org/10.1109/iv47402.2020.9304568

	Introduction
	Problems and Research Questions
	Formalizing Operational Design Domains
	Utilization of Scenario-Based Testing
	Domain-Specific Rule Formalization

	Experiment Setup
	Tool Pipeline Overview
	Data Exchange Format
	Definition of Tree-Based Scenario Classifiers
	Scenario Class Calculator
	Analysis of Segments
	Evaluation of Segment Classifications

	Preliminary Results
	Next steps
	Related Work
	Conclusion

