
Electronic Communications of the EASST
Volume XXX (2018)

Automated Verification of Critical Systems 2018
(AVoCS 2018)

Rule-Based Synthesis of Chains of Security Functions
for Software-Defined Networks

Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, Stephan Merz

19 pages

Guest Editors: David Pichardie, Mihaela Sighireanu
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Rule-Based Synthesis of Chains of Security Functions
for Software-Defined Networks

Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, Stephan Merz

Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France
nicolas.schnepf@inria.fr

Abstract: Software-defined networks (SDN) offer a high degree of programmabil-
ity for handling and forwarding packets. In particular, they allow network adminis-
trators to combine different security functions, such as firewalls, intrusion detection
systems, and external services, into security chains designed to prevent or mitigate
attacks against end user applications. These chains can benefit from formal tech-
niques for their automated construction and verification. We propose in this paper a
rule-based system for automating the composition and configuration of such chains
for Android applications. Given the network characterization of an application and
the set of permissions it requires, our rules construct an abstract representation of
a custom security chain. This representation is then translated into a concrete im-
plementation of the chain in Pyretic, a domain-specific language for programming
SDN controllers. We prove that the chains produced by our rules satisfy a number
of correctness properties such as the absence of black holes or loops, and shadowing
freedom, and that they are coherent with the underlying security policy.

Keywords: Security Management, Software-Defined Networking, Android, Rule-
Based Programming.

1 Introduction

Software Defined Networking (SDN) is a recent paradigm in the field of network management
and security that promises to improve network programability by decoupling the data and control
planes. In this context, the data plane consists in virtual switches and equipment responsible for
forwarding traffic across the network, whereas the control plane consists in a single or multiple
controllers, responsible for dynamically adjusting the configuration of the data plane in response
to network events. The communication between the two planes is supported by a dedicated
protocol, typically OpenFlow. SDN is oftenly used in conjunction with Network Function Virtu-
alization (NFV) for supporting the automated deployment of more advanced security functions
running in virtual machines in addition to virtual switches.

Based on these new networking paradigms, researchers proposed the concept of chains of se-
curity functions for protecting end user applications against attacks. These chains are composed
of different security mechanisms such as intrusion detection systems (IDS) or firewalls in cloud
infrastructures for the protection of end users. The programmability introduced by software de-
fined networks helps greatly for automating the configuration, adjustment, and deployment of
chains of security functions. Programming SDN controllers is made simpler by the introduction

1 / 19 Volume XXX (2018)

mailto:nicolas.schnepf@inria.fr

Rule-Based Synthesis of Chains of Security Functions for SDN

of domain-specific programming languages such as Pyretic designed for implementing chains
of security functions at a high level of abstraction before compiling them into low-level Open-
Flow configuration rules. Nevertheless, the validation of chains of security functions remains
non-trivial: the complexity of their internal security functions makes it incredibly easy to intro-
duce misconfigurations and security holes that can then be exploited by attackers targeting these
networks and their users.

There exist several approaches for formally verifying chains of security functions a poste-
riori (cf. section 2). In this paper we propose an inference system based on Horn clauses for
synthesizing chains of security functions in an automated manner, ensuring that the generated
chains satisfy elementary correctness requirements. We specifically target the protection of net-
work traffic generated by Android applications, taking into account security requirements derived
from the observed networking behavior of an application and the set of operating-system level
requirements that the application requires. We rely on our previous work [22] for characteriz-
ing the networking behavior by learning a finite Markov chain that represents the network flows
observed by a dedicated network probe. Using an inference system in order to construct a high-
level representation of the security chain, we obtain a declarative description of the generation
process that simplifies reasoning about the properties it guarantees, such as the consistency of
the deployed security rules and the absence of loops.

Our contributions are threefold: (i) we design a system of Horn clauses for the inference of
chains of security functions that ensure certain correctness properties and that can be translated
directly into Pyretic implementations, (ii) we propose a new representation of security require-
ments of Android end users, (iii) we have implemented a prototype of our method in Prolog.

The remainder of this paper is organized as follows. Section 2 gives an overview of existing
related work. Section 3 introduces background on network security. Section 4 describes the
system of Horn clauses used for synthesizing SDN based chains of security functions. Section 6
discusses the correctness properties that are guaranteed by our solution. Section 7 concludes and
points out future research perspectives.

2 Related work

Much work has been directed towards the detection of attacks: most approaches rely on packet
analysis for detecting attacks [1, 9, 6]: these methods provide good accuracy; nevertheless the
increasing mass of traffic to analyze in modern network require more efficient detection meth-
ods. In her PhD thesis, Anna Sperotto proposed to base the detection of attack on flow records
instead of packet traces [23]: the objective of her work is to configure IDS depending on ob-
served traces of attacks. Nevertheless, she does not consider data transmitted during exchanges
and does not explore the possibility of deploying other security functions than IDS. Comparing
detection methods requires dedicated datasets such as the CTU 13 [13] which contains botnet
traces, but further datasets are necessary in order to capture other types of attacks such as DOS,
port scanning or worm attacks.

New perspectives for the protection of end users are introduced by the SDN paradigm: one
possible approach consists in composing different security functions into chains [16, 15]. There
exists various work in the literature that addresses the formal verification of such chains. For in-

AVoCS 2018 2 / 19

ECEASST

stance, Vericon [3] is a framework in which properties to be guaranteed by network policies can
be expressed and verified. Al-Shaer and Hamed [2] propose another approach for the discovery
of anomalies in distributed firewalls, targeting in particular contradictions in large firewall poli-
cies. Those approaches focus on the verification of the data plane of chains of security functions
but do not cover the validation of aspects related to the control plane. In addition, while these
approaches are useful for validating a posteriori the correctness of policies w.r.t. pre-established
criteria, they do not generate a policy according to these criteria, and they may miss configuration
errors that are not covered by the specified properties.

We previously [21] introduced the Synaptic checker for the verification of both control and
data plane properties of an SDN policy. This checker relies on the Pyretic programming lan-
guage [11], part of the Frenetic family of languages for programming SDN controllers [12].
Pyretic is implemented as a domain-specific language embedded in Python for describing chains
of rules at a level of abstraction well above that of actual SDN protocols, but from which Open-
Flow rules can be compiled. Pyretic is complemented by an extension, called Kinetic, for
describing control plane policies; Kinetic also offers formal verification techniques based on
model checking [17]. Synaptic extends this formalism for verifying the correctness of both the
control and data planes of Pyretic policies, before their deployment in the network. We also
proposed [22] an extension of the Synaptic checker with features for automatically learning net-
work behaviors, represented as a Markov chain, of Android applications using their network flow
traces. Our present paper is based on this technique and exploits it for the automatic generation
of SDN policies satisfying the security requirements corresponding to such an application.

Most methods for the validation of chains of security functions consider their correctness a
posteriori, using techniques such as model checking [8, 10] or SMT solving [5]. In this paper,
we suggest a declarative technique for the automatic synthesis of such chains, expressed at a high
level of abstraction. We express our technique in terms of Horn clauses and have prototypically
implemented it in Prolog. This representation makes it easy to modify the rules in order to take
into account varying end-user requirements, rather than hard-coded policies defined by operators.
It also helps for formally establishing a priori certain properties that the generated chains ensure.

3 Background on network security

We introduce some background regarding network security, with respect to the attacks we con-
sider, network programmability, Android environments, and profiling of applications.

3.1 Network flows and considered attacks

Our work is centered on the inference of chains of security functions based on a characterization
of end-user applications in terms of network flows. According to RFC 5101 [7], network flows
can be defined as “collections of IP packets passing through an observation point in the network
during a certain interval”. They are generally described by different properties such as IP version,
source and destination IP addresses (srcaddr and dstaddr), source and destination ports (srcport
and dstport), network protocol (protocol), and the numbers of packets and bytes (packets and
bytes). In our context, they are collected directly on end-user devices [18], and are extended with

3 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

a timestamp (timestamp) and the name of the source application (appname). We furthermore
complement this information with the name of the organization (orgname) responsible for the
network that contains the destination IP address. As highlighted in [23], network flows are
widely used for the detection of different categories of attacks, especially denial of service, port
scanning, worms and botnets.

A denial of service (DoS) attack is characterized by “one or more machines targeting a victim
and attempting to prevent the victim from doing useful work” [14]. In our context, we will con-
sider DoS attacks that are observable from a networking point of view, such as SYN flood attacks
where a high number of SYN packets are sent to the same host in order to overload the TCP stack
with open connections that will never been closed. In a port scanning attack, an application initi-
ates connections with a wide range of ports of a machine (or several machines) in order to detect
which ports are open. We will consider port scanning techniques such as those generated by the
nmap port scanner, available on standard Linux platforms. A worm is a program that can run in-
dependently, will consume the resources of its host in order to maintain itself, and can propagate
a complete working version of itself to other machines [19]. Worms replicate by exploiting the
vulnerabilities of applications and operating systems or by social engineering methods. We will
consider worms that scan a certain port on many different machines in order to exploit a specific
vulnerability on operating systems. A (potentially) malicious bot is a program that is installed
on a system in order to enable that system to automatically (or semi-automatically) perform a
task (or a set of tasks) typically under the command and control of a remote administrator, called
“bot master” [4]. These bots can be detected based on the high volume of traffic they exchange
with their controller or possibly by the use of network protocols that are not commonly observed
in a given context.

3.2 Network programming with Pyretic

Pyretic is a domain-specific programming language embedded in Python for the configuration
of SDN controllers. It is based on fundamental blocks (called policies) that can be combined for
generating more complex policies. In the remainder of this paper we will consider the following
primitive policies and composition operators:

• identity: forward all packets;

• drop: block all packets;

• match(x1 = y1, . . . ,xn = yn): forward those packets whose header fields xi contain the
values yi;

• modify(x1 = y1, . . . ,xn = yn): forward all packets but modifies their header fields xi to the
values yi;

• count packets(x1 = y1, . . . ,xn = yn): count the number of packets whose header fields xi

contain the values yi;

• LimitFilters(k,x1 = y1, . . . ,xn = yn): forward a maximum of k packets whose header fields
xi contain the values yi;

AVoCS 2018 4 / 19

ECEASST

• RegexpQuery(pattern): forward packets whose payload matches the given pattern (a reg-
ular expression);

• sequential(p1, . . . , pn): compose the policies {p1, . . . , pn} in sequence, also written p1� p2
for n = 2;

• parallel(p1, . . . , pn): compose the policies {p1, . . . , pn} in parallel, also written p1+ p2 for
n = 2;

• negate(p): forward packets that are blocked by the policy p, and block those that are
forwarded by p, also written ∼ p.

This language and its primitives will serve as a support for building and composing security
functions for software-defined networks.

3.3 Focus on Android environments

We will target the protection of Android devices and their applications. In particular, we will rely
on the Flowoid probe [18] dedicated to Android devices and will use it for exporting network
flow records of applications running on these devices. Given its position as the market-leading
operating system for smart devices and the limited effectiveness of preventive methods for proac-
tively detecting malware applications, Android is particularly exposed to security attacks. For
instance in 2016, Kaspersky Lab identified more than 3.5 million malware apps on the Google
market store. In addition to the network flows previously mentioned, we will take into account
the permissions that an application holds for accessing resources. An Android application must
explicitly state the permissions it requires in its manifest file, and the security system of Android
distinguishes between normal and (potentially) dangerous permissions. The former represents
accesses to resources considered as non-critical, and they are automatically granted when re-
quested. Dangerous permissions provide access to critical information such as user contacts, and
they must be granted manually, when the application is installed. An application holding such a
permission could use it to leak sensitive data to remote malicious servers. Therefore, the security
chains that we generate include specific checks to prevent such attacks from occurring.

3.4 Automated network profiling of Android applications

We proposed in [22] an algorithm for automatically learning a Markov model of the networking
behavior of Android applications: this model is based on trace logs of the flows generated by an
application, collected directly on the device by using the Flowoid probe [18] that can associate
flows with applications depending on the name of the package producer. These flow records are
then transmitted to a centralized platform by using the NetFlow protocol in order to learn the
communication pattern of the application: the first stage of our learning algorithm consists in
aggregating destination IP addresses of flows depending on common owning organizations. This
information is obtained from the result of whois requests, more specifically from the orgname
and netname fields of the answers to such requests. Once flows have been completed by this
information we build our Markov model of the application in the following manner: states are

5 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

computed as collections of flows sharing the same orgname or netname; transitions are computed
depending on the successions of orgnames or netnames in the input log; finally, probabilities
are computed depending on the number of flow records in the input state and on the number of
occurrences of the transition in the input log. Algorithm 1 shows the pseudo-code for the learning
algorithm, and Fig. 1 contains the automaton obtained for the application Pokemon Go from a
flow trace containing 150 flow records. In summary, the automaton represents the connections
that the application establishes to addresses associated with different organizations.

Algorithm 1 Automaton learning algorithm.
States := /0
Transitions := /0
Flows :=List of flows.

. Initialize the set of states
flow := Flows[0]
States[flow] := 1

. Count occurrences of states and transitions
for i ∈ 1..N do

transition := (flow,Flows[i])
flow := Flows[i]
if flow ∈ States then

States[flow] += 1
else

States[flow] := 1
end if
if transition ∈ Transitions then

Transitions[transition] += 1
else

Transitions[transition] := 1
end if

end for
. Compute the probabilities of transitions

for transition ∈ Transitions do
Transitions[transition] := Transitions[transition]/States[transition.srcState]

end for

4 Automated synthesis of chains of security functions

We propose in this paper a strategy based on rule-based programming for the automated infer-
ence of chains of security functions, based on a characterization of an Android application in
terms of its network behavior and the permissions it holds. Our approach is based on the classi-
fication of the network traffic generated by an application as described in Sect. 3.4. We then use
logic programming for deriving the functional specification of the security chain to be deployed,

AVoCS 2018 6 / 19

ECEASST

Figure 1: Automaton describing the behavior of an Android application.

and finally generate an instance of such a chain using the Pyretic language for programming
SDN controllers. Our work is presented in the context of Android protection, although it can
be extended to any systems using similar permissions for protecting user data. Similarly, it is
possible to consider other formats or implementations for the generation of chains of security
functions, for instance by exploiting Network Function Virtualization (NFV) facilities.

4.1 Representing flows, traces, and security functions

Recall that flows are collections of packets sharing certain properties. We summarize a flow in
a record that contains the key attributes of a flow. In the following, N and R+ denote the sets
of natural and non-negative real numbers, ADDR = {0,1}32 and PORT = {1, . . . ,65535} the sets
of IP addresses and ports, PROT = {TCP,UDP,ARP, ICMP, . . .} the set of networking protocols
and STRING the set of (ASCII) character strings.

Definition 1. A flow f is a record that contains the following attributes and maps them to values
in the corresponding domains:

f .timestamp ∈ R+ f .srcaddr ∈ ADDR

f .dstaddr ∈ ADDR f .srcport ∈ PORT

f .dstport ∈ PORT f .bytes ∈ N
f .packets ∈ N f .protocol ∈ PROT

f .appname ∈ STRING f .orgname ∈ STRING

A flow trace is a sequence of flows such that time stamps are strictly increasing along the se-
quence. By abuse of notation, we will write f ∈ t to indicate that flow f appears as an element
of the sequence t. Given two traces t1 and t2, their merge t1⊕ t2 corresponds to the unique trace
formed by the elements of t1 and t2 in increasing order of time stamps, with the proviso that

7 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

whenever t1 and t2 contain flows f1 and f2 with f1.timestamp = f2.timestamp, then f1 appears
in t1⊕ t2 while f2 is dropped. For an application app we will note tapp a flow trace such that
f .appname = app for all flows f in the trace, and Papp the list of permissions it requests. We let
D stand for the set of Android permissions qualified as dangerous.

Our approach aims at constructing a chain of security functions for protecting a specific appli-
cation. Security functions transform network traffic, i.e. sequences of packets. Packets contain
header fields similar to flows, except those that contain aggregate information such as packets
and bytes, but they also contain a packet payload (field payload) that represents the actual in-
formation transmitted in a packet. We overload the merge operation ⊕ to apply to sequences of
packets as well as to flow traces.

Security functions are built by combining in parallel basic building blocks, called security
rules, and they in turn give rise to chains by applying parallel or sequential composition. Rules,
security functions, and chains transform flow traces, in particular through blocking certain traffic
and modifying the values of certain header fields.

Definition 2. A security function s is a function from traffic (i.e., a sequence of packets) to
traffic. For an integer n ∈ N, the function cut(t,n) returns the prefix of traffic t consisting of at
most n packets. Given a predicate pred(p) on packets, we define the function restrict(t,pred)
that returns the subsequence of traffic t consisting of those packets satisfying pred.

Security functions can be composed in sequence (◦�) or in parallel (◦+) where

(s1 ◦� s2)(t) = s2(s1(t))

(s1 ◦+ s2)(t) = s1(t) ⊕ s2(t)

and these operators generalize to n-ary compositions©� and©+.

4.2 Classifying flows for learning security requirements

Our first objective is to classify the flows observed for an application according to the attack
types mentioned in section 3.1. As introduced in Sect. 3.4, the network trace tapp generated by an
application is represented by a Markov chain whose locations Lapp correspond to (not necessarily
contiguous) sub-traces of tapp consisting of flows with the same orgname attribute. Transitions
Tapp of the Markov chain are triples (l, p, l′) for locations l, l′ ∈ Lapp and a probability value
p ∈ [0;1]. Observe that for any flow f ∈ tapp, there is a unique location l ∈ Lapp (corresponding
to f .orgname) such that f ∈ l; we denote this location as l f .

The analysis of the transition probabilities that occur in the Markov chain, and in particular
those associated with self-loops, is at the basis of detecting potential attacks such as denial of
service, port scanning or worm traffic.

We thus classify flows, and by extension their destination addresses, based on the following

AVoCS 2018 8 / 19

ECEASST

metrics defined for a flow trace t of length n > 1:

avg interval(t) =
∑

n
i=2 ti.timestamp− ti−1.timestamp

n−1

avg size(t) =
∑

n
i=1 ti.packets

n
count(x, t) = |{i ∈ 1 ..n : ti.dstaddr = x∨ ti.dstport = x}|

ports(t) = {p ∈ PORT : ∃i ∈ 1 ..n : ti.dstport = p}
protocols(t) = {p ∈ PROT : ∃i ∈ 1 ..n : ti.protocol = p}

In addition, bgp ranking(ip) denotes a value corresponding to a trust ranking measure of the IP
address ip. In practice, this value is obtained by contacting a remote service.

We associate the following thresholds to the above metrics; appropriate threshold values are
defined by the network operators and administrators.

• attack limit: maximum probability of self looping transitions for considering a location of
the automaton as normal;

• min interval: minimum acceptable interval time between the arrival of packets in a flow;

• min size: minimum number of packets in a flow;

• ip limit: maximum number of occurrences of an IP address;

• port limit: maximum number of occurrences of a port number;

• port scan limit: minimum number of port numbers contacted in a trace for considering it
as a port scanning trace;

• unsafe threshold: maximum value of bgp ranking for considering an IP address as safe.

At the core of our approach lies a classification of the destination addresses a appearing in
flows in tapp according to the following predicates that indicate whether a is suspected to be the
target of an attack of the various types we consider:

dos(a) ≡ f ∈ tapp∧a = f .dstaddr∧ (l f , p, l f) ∈ Tapp ∧
p≥ attack limit∧ count(a, l f)≥ ip limit ∧
avg interval(l f)≤ min interval∧avg size(l f)≤ min size

port scan(a) ≡ f ∈ tapp∧a = f .dstaddr∧ (l f , p, l f) ∈ Tapp ∧
p≥ attack limit∧ count(a, l f)≥ ip limit ∧
avg interval(l f)≤ min interval∧avg size(l f)≤ min size ∧
|ports(lf) | ≥ port scan limit

9 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

worm(a, pt) ≡ f ∈ tapp∧a = f .dstaddr∧ (l f , p, l f) ∈ Tapp ∧
p≥ attack limit∧ pt = f .dstport∧ count(pt, l f)≥ port limit

botnet(a, pt) ≡ f ∈ tapp∧a = f .dstaddr∧ count(a, l f)≥ ip limit∧ pt = f .dstport ∧
protocols(l f)∩{“tcp”, “udp”} 6= /0 ⇒ avg interval(l f)≤ min interval

unsafe(a) ≡ f ∈ tapp∧a = f .dstaddr∧bgp ranking(a)≥ unsafe threshold

safe(a) ≡ ¬dos(a)∧¬port scan(a)∧¬worm(a, pt)∧¬botnet(a, pt)∧¬unsafe(a)

danger(a, pm) ≡ f ∈ tapp∧a = f .dstaddr∧ pm ∈ Pf .appname∩D

In words, an address is considered to be the target of a potential attack if there exists a flow
in tapp for which certain threshold values are exceeded. Addresses that are not the target of an
attack are considered safe. In addition, the predicate danger records addresses that receive flows
from an application that holds dangerous permissions. For example, a few properties derived for
the Pokemon Go application, based on its automaton are given in Listing 1.1.

unsafe(169.45.223.20)
unsafe(37.58.73.183)
unsafe(54.241.184.32)
unsafe(54.241.165.61)
unsafe(173.192.233.91)

Listing 1: Example of addresses contacted by Pokemon Go that may be classified as unsafe.

4.3 Inferring a high-level representation of the chain

We now present a rule-based program for inferring the chain of security functions that should
be deployed on the basis of the observed trace, making use of the classification of flows that
occur in the trace. In a nutshell, we start by associating elementary security rules with addresses
that occur in the trace. These will be composed in parallel to build security functions such as
firewalls or intrusion detection systems, which in turn are composed sequentially to form the
entire chain. In the present section, security functions are represented symbolically; we will
explain in section 4.4 how we translate this representation into the Pyretic language.

The elementary security rules make use of the following predicates that are defined externally:

• regexp(s, pm): true if the string s (representing the packet payload) matches a regular
expression associated with the permission pm;

• tcp check(t): true if the network traffic t is a valid TCP connection;

• udp check(t): true if the network traffic t is a valid UDP connection;

• http check(s): true if the string s (representing the packet payload) is a valid HTTP request;

• inspect payload(s): true if the string s (representing the packet payload) passes deep
packet inspection.

AVoCS 2018 10 / 19

ECEASST

Our system is based on the following elementary security rules:

forward(a, t) = restrict(t, λ pk : pk.dstaddr = a)

block(a, pt, t) = restrict(t, λ pk : pk.dstaddr 6= a∧ pk.dstport 6= pt)

limit(a,n, t) = cut(forward(a, t),n)

filter(a, pm, t) = restrict(t, λ pk : pk.dstaddr = a∧ regexp(pk.payload, pm))

inspect(a, t) = restrict(t, λ pk : pk.dstaddr = a∧ inspect payload(pk.payload))

tcp(a, pt, t) =

restrict(t, λ pk : pk.dstaddr = a∧ pk.dstport = pt)

if tcp check(t)
〈〉 otherwise

udp(a, pt, t) =

restrict(t, λ pk : pk.dstaddr = a∧ pk.dstport = pt)

if udp check(t)
〈〉 otherwise

http(a, pt, t) = restrict(t, λ pk : pk.dstaddr = a∧ pk.dstport = pt
∧ http check(pk.payload))

The inference system below determines which security rules to deploy for addresses appearing
in the given flow trace. For each of the elementary security rules r above, a corresponding pred-
icate deployr indicates if the rule is to be instantiated, with additional parameters corresponding
to the relevant IP address, port etc.

deployblock(a, pt) ← worm(a, pt)

deployblock(a, pt) ← botnet(a, pt)

deployforward(a) ← ¬worm(a, pt)∧¬botnet(a, pt)

deploylimit(a, ip limit) ← dos(a)

deploylimit(a, ip limit) ← port scan(a)

deploytcp(a, pt) ← f ∈ tapp∧a = f .dstaddr∧ pt = f .dstport∧ f .protocol = “tcp”

deployudp(a, pt) ← f ∈ tapp∧a = f .dstaddr∧ pt = f .dstport ∧
pt 6= 80∧ pt 6= 443∧ f .protocol = “udp”

deployhttp(a,80) ← f ∈ tapp∧a = f .dstaddr∧ f .dstport = 80

deployhttp(a,443) ← f ∈ tapp∧a = f .dstaddr∧ f .dstport = 443

deployfilter(a, pm) ← unsafe(a)∧ danger(a, pm)

deployinspect(a) ← unsafe(a)

Based on the predicates deployr inferred to be true from a given trace tapp characterizing the
network behavior of the application we wish to protect, we now construct security functions by
composing elementary rules in parallel.

11 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

stateless firewall(t) = ©+{ forward(a, t) : deployforward(a), a ∈ ADDR}
◦+©+{block(a, pt, t) : deployblock(a, pt), a ∈ ADDR, pt ∈ PORT}

ids(t) =©+{ limit(a,n, t) : deploylimit(a,n), a ∈ ADDR, n ∈ N}
stateful firewall(t) = ©+{ tcp(a, pt, t) : deploytcp(a, pt), a ∈ ADDR, pt ∈ PORT}

◦+©+{udp(a, pt, t) : deployudp(a, pt), a ∈ ADDR, pt ∈ PORT}
◦+©+{http(a, pt, t) : deployhttp(a, pt), a ∈ ADDR, pt ∈ PORT}

dpi(t) =©+{ inspect(a, t) : deployinspect(a), a ∈ ADDR}
dlp(t) =©+{filter(a, pm, t) : deployfilter(a, pm), a ∈ ADDR, pm ∈D }

Continuing our example of the Pokemon Go application, we obtain a chain containing the
following security functions. (We omit the full definitions since the inference system generates
too many security rules, but show the overall structure of each security function.)

stateless firewall(t) = forward(169.45.223.16, t)◦+ forward(169.45.223.20, t)◦+ . . .

stateful firewall(t) = tcp(169.45.223.16,80, t)◦+ tcp(169.45.223.20,80, t)◦+ . . .

http(169.45.223.20,80, t)◦+ . . .

dpi(t) = inspect(169.45.223.16, t)◦+ inspect(169.45.223.20, t)◦+ . . .

These security functions are in turn composed into chains to be applied to the network traffic
of the different types:

safe chain = stateless firewall ◦� stateful firewall

unsafe chain = stateless firewall ◦� stateful firewall ◦� dpi ◦� dlp

dos chain = stateless firewall ◦� ids ◦� stateful firewall

port scan chain = dos chain

worm chain = stateless firewall

botnet chain = stateless firewall

These chains are deployed for filtering traffic generated by the target application by subjecting
addresses to the chains associated with the classes to which the address belongs.

For the Pokemon Go application, we should deploy the chain corresponding to unsafe traffic.
However, given that no dangerous permission is declared in the manifest file of this application,
the DLP component of that chain is trivial and can be omitted in order to reduce the overall
complexity of flow evaluation.

4.4 Generation of a Pyretic implementation of the chain

The last step of our approach consists in generating the Pyretic code implementing the abstract
functions that we previously computed. Below we provide rewriting rules to derive Pyretic im-
plementations corresponding to the elementary security rules introduced in section 4.3. In these
rewrites, the argument of the security rules corresponding to the traffic t remains implicit in the
Pyretic translation, which is applied to the current stream of packets. The functions DPIQuery,

AVoCS 2018 12 / 19

ECEASST

TCPFilter, UDPFilter, and HTTPFilter are part of our Synaptic checker [21] using dynamic
query policies that Pyretic provides. The translations of the overall chains is then obtained by
composing the Pyretic code sequentially or in parallel using the combinators� and + of Pyretic.
The following definitions indicate the implementations of the elementary security rules;

forward(a, t) ; match(dstaddr = a)

block(a, pt, t) ; ∼match(dstaddr = a, dstport = pt)

limit(a,n, t) ; LimitFilters(n,dstaddr = a)

filter(a, pm, t) ; match(dstaddr = a)� RegexpQuery(regexp(pm))

inspect(a, t) ; match(dstaddr = a)� DPIQuery

tcp(a, pt, t) ; match(dstaddr = a,dstport = pt)� TCPFilter

udp(a, pt, t) ; match(dstaddr = a,dstport = pt)� UDPFilter

http(a, pt, t) ; match(dstaddr = a,dstport = pt)� HTTPFilter

To illustrate this last step of our inference system let us consider again our running example,
the Pokemon Go application. The security functions introduced previously are converted into
the following chain of security functions.

stateless firewall = match(dstaddr = 169.45.223.16)+match(dstaddr = 169.45.223.20)+ . . .

stateful firewall = match(dstaddr = 169.45.223.16,dstport = 80)� TCPFilter +

match(dstaddr = 169.45.223.20,dstport = 80)� TCPFilter+ . . .+

match(dstaddr = 169.45.223.20,dstport = 80)� HTTPFilter+ . . .

dpi = match(dstaddr = 169.45.223.16)� DPIQuery +

match(dstaddr = 169.45.223.20)� DPIQuery+ . . .

chain = stateless firewall� stateful firewall� dpi

5 Performance evaluation

We implemented our inference system in SWI-Prolog (version 7.6.4). We evaluated the per-
formances of the proposed solution through an extensive set of experiments. The experimental
setup was based on a MacBookPro laptop with an Intel Core i7 (2.5 GHz) processor and 16 GB
of RAM. During these experiments, we considered a set of log files (more than 7000 network
flows) captured from Android applications summarized in Fig. 2.

These results clearly illustrate the high heterogeneity in the number of security functions and
rules generated for each application. To minimize the impact of the deployment of several chains
we designed a factorization algorithm presented in [20]: this algorithm allows us to group several
chains of security functions into a larger one that contains only one occurence of each security
function and at most as many security rules as the original chains.

In complement to these experiments we evaluated the accuracy of the different chains of se-
curity functions. We evaluated this metric by injecting a simple port scan of 50 flows in the log

13 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

applications # flows # IP/ports # sf # rules
disneyland 282 5 4 44
dropbox 1000 17 5 311
faceswitch 151 30 5 425
lequipe 1000 208 4 1640
meteo 1000 89 4 716
ninegag 1000 124 4 930
pokemongo 275 24 5 485
ratp 779 3 4 28
skype 1000 442 5 6529
viber 1000 176 5 4163

Figure 2: Network flows of Android applications considered during experiments, with the num-
ber of combinations of IP addresses and ports they contact, and the number of security functions
(sf) and rules for the generated security chain.

Application Avg. Acc. Min. Acc. Max. Acc.
viber 0.683 0.502 0.997
faceswitch 0.812 0.518 0.990
dropbox 0.997 0.993 1.000
ninegag 0.509 0.498 0.526
disneyland 0.992 0.986 1.000
pokemongo 0.743 0.512 0.994
skype 0.998 0.998 0.998
lequipe 0.518 0.496 0.537
meteo 0.837 0.510 0.998
ratp 0.940 0.692 0.999

Figure 3: Accuracy of the chains generated for each application.

file of each application, and we quantify the accuracy as the ratio of the sum of true positive and
true negative results over the total number of flows. Concretely, we used 70% of the logs for
generating the chains and 30% for the evaluation. We also fixed a detection rate corresponding
to the number of attack flows that must be matched before blocking the traffic and we varied this
rate from 0 to 10; the corresponding results appear in Fig. 3 where we present the minimum,
maximum and average accuracy measured for each chain.

We again observe a high heterogeneity in the results obtained for each application: for some
applications, the accuracy is very close to 100% while others have a minimal accuracy lower
than 50%. This is again caused by the nature of each log file: for some applications the 30% of
logs used for evaluation only contain IP addresses that where already known during the learning
phase and are therefore accepted by the chain while other applications have more disparities in
their logs. The improvement of these results will require joint work with researchers working on
attack detection to design more elaborated methods of detection. The approach proposed in this
paper decouples this phase from the inference of chains through first order predicates, and this

AVoCS 2018 14 / 19

ECEASST

makes it easy to change the method for detecting attacks without modifying the general process.

6 Correctness properties of the generated chains

The construction of security chains based on a high-level representation guarantees certain cor-
rectness properties that we now discuss. Specific correctness properties of chains can be verified
using formal verification techniques such as model checking or SMT solving, and our previous
contribution [21] is intended for doing so; it is thus complementary to the work presented here.

6.1 Packet routing

Two elementary desirable properties of packet routing in networks are the absence of black holes
and of loops. A black hole arises if packets are sent to a link at which no actual routing function
is installed. A loop refers to a cycle in routing policies, so that packets may be sent back to a
security function that they have already passed. Our security functions avoid these problems by
construction.

Lemma 1. The security chains generated by the approach described in section 4 are free of
black holes and of loops.

Proof. In our setup, security functions are total functions on sequences of packets, and they are
built up from elementary security rules using parallel and sequential composition. In particular,
every constituent of our chains is fully defined before it is used, so black holes do not exist
at the abstract level of the descriptions of the chains. Similarly, the high-level definitions of
chains do not involve fixpoint operators or similar looping constructs. Finally, we rely on the
close correspondence between the abstract chains and their Pyretic implementation and on the
correctness of the Pyretic translator in order to ensure that the latter does not introduce black
holes or loops.

6.2 Shadowing freedom and coherence

The two main correctness properties of chains of security functions that we are interested in
are shadowing freedom and coherence. Shadowing freedom means that whenever two rules are
composed in parallel within a chain, only one of them actually applies. This property ensures
that there is no confusion in the sense that two rules could be applied with potentially conflicting
results. In particular, this property implies the consistency of the rules, which requires that
whenever two rules apply, they result in the same decisions. Coherence means that the traffic after
applying the security chains satisfies the security requirements: safe traffic passes unchanged,
whereas potentially dangerous traffic is either blocked or limited within acceptable bounds.

Lemma 2. The security chains generated by the approach described in section 4 guarantee
shadowing freedom.

Proof. Elementary security rules are composed in parallel in the definitions of the basic security
functions stateless firewall, ids, stateful firewall, dpi, and dlp. The definition of stateless firewall

15 / 19 Volume XXX (2018)

Rule-Based Synthesis of Chains of Security Functions for SDN

composes in parallel rules forward and block, which are potentially in contradiction. However,
this is possible only if both deployforward(a) and deployblock(a, pt) are true for some address a
and port pt, and this is impossible due to the definitions of these predicates.

Similarly, the parallel composition of the elementary security rules tcp, udp, and http in the
definition of stateful firewall is unproblematic because the definitions of the corresponding pred-
icates deploytcp, deployudp, and deployhttp are mutually exclusive.

We now show that our security chains are coherent with the security policy determined on the
basis of the trace tapp underlying their generation.

Lemma 3. Given a trace tapp characterizing the network traffic generated by an application, the
security chains generated by the approach described in section 4 transmit unchanged the traffic
towards addresses considered as safe but block or limit network traffic towards other addresses.

Proof. An address is considered as potentially not safe if tapp contains some flow towards that
adress classified as worm, botnet, dos, port scanning or unsafe. The stateless firewall applied as
the first security function in the chain will directly block packets towards IP addresses associated
with worm and botnet traffic.

Concerning traffic directed to addresses associated with DoS or port scanning attacks, it will
pass the stateless firewall and will subsequently be transmitted to the IDS. The traffic will then
be limited to a number of packets bounded by the fixed threshold ip limit, considered to be
acceptable by the security policy.

For addresses associated with unsafe flows, i.e., network traffic potentially compromising sen-
sitive data, the security chains contain the security functions DPI and DLP that check the payload
of packets. These apply the security policy by blocking packets that do not match the criteria
defined by the predicates regexp (associated with Android permissions) and inspect payload.

Traffic towards addresses classified as safe is only subject to the stateless firewall, which lets
it pass unchanged.

7 Conclusions and future work

We proposed in this paper a declarative approach based on inference rules for automating the
generation of chains of security functions, based on the requirements of end users. This in-
ference system is intended to protect Android applications, by taking into account both their
networking behavior and the OS-level permissions that they request. By using first-order pred-
icates for classifying network traffic observed in the flow trace – rather than for example finite
state machines – the composition and factorization of security chains to be applied for several
applications becomes straightforward. Our system infers a high-level representation of the secu-
rity functions, which can be translated into a concrete implementation in the Pyretic language for
programming software-defined networks. We showed that the generated chains satisfy several
desirable properties such as the absence of black holes and of loops, shadowing freedom, and
that they are consistent with the underlying security policy.

Further correctness properties of the chains can be verified using our Synaptic checker [21]
based on symbolic model checking and SMT solving. The main assumption underlying our

AVoCS 2018 16 / 19

ECEASST

approach is that the network-level behavior of Android applications can be characterized in terms
of flow traces that are collected before the security chains are generated, and that are analyzed
offline, as described in our previous work [22] on process learning. This assumption holds for
many, but not all Android applications, a Web browser being a typical counter-example. In that
case, network administrators must install a default security chain.

An interesting extension of our present work would be to consider which parts of the analysis
are sufficiently lightweight to be performed online. As further perspectives, we are also plan-
ning to work on optimizing and improving the parameterization of the security chains that are
generated by our inference system. In addition, we are interested in investigating to what extent
our solution is compatible with network function virtualization techniques (NFV) to implement
security functions, such as firewalls and intrusion detection systems.

Acknowledgements: Helpful comments by the AVoCS reviewers are gratefully acknowledged.

References

[1] Ain, A., Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Rank correlation for low-rate
ddos attack detection: An empirical evaluation. I. J. Network Security 18(3), 474–480
(2016)

[2] Al-Shaer, E.S., Hamed, H.H.: Discovery of policy anomalies in distributed firewalls. In:
Proceedings of the Twenty-third Annual Joint Conference of the IEEE Computer and Com-
munications (INFOCOM 2004) (2004)

[3] Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira, M.,
Valadarsky, A.: Vericon: Towards Verifying Controller Programs in Software-Defined
Networks. In: Proc. 35th ACM SIGPLAN Intl. Conf. Programming Language Design
(PLDI’14). pp. 282–293. Edinburgh, UK (2014)

[4] Barthel, D., Vasseur, J., Pister, K., Kim, M., Dejean, N.: Routing Metrics Used
for Path Calculation in Low-Power and Lossy Networks. RFC 6551 (Mar 2012).
doi:10.17487/RFC6551

[5] Biere, A., Heule, M., van Maaren, H., Walsch, T.: Handbook of satisfiability. IO press
(2008)

[6] Chen, X., Heidemann, J.: Detecting early worm propagation through packet matching.
Tech. Rep. ISI-TR-2004-585, USC/Information Sciences Institute (Feb 2004), http://www.
isi.edu/%7ejohnh/PAPERS/Chen04a.html

[7] Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of IP Traffic Flow Information. RFC 5101 (Jan 2008). doi:10.17487/RFC5101

[8] Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking, LNCS,
vol. 5000, pp. 1–26. Springer (2008)

17 / 19 Volume XXX (2018)

http://dx.doi.org/10.17487/RFC6551
http://www.isi.edu/%7ejohnh/PAPERS/Chen04a.html
http://www.isi.edu/%7ejohnh/PAPERS/Chen04a.html
http://dx.doi.org/10.17487/RFC5101

Rule-Based Synthesis of Chains of Security Functions for SDN

[9] Ensafi, R., Park, J.C., Kapur, D., Crandall, J.R.: Idle port scanning and non-interference
analysis of network protocol stacks using model checking. In: Proceedings of the 19th
USENIX Conference on Security. pp. 17–17. USENIX Security’10, USENIX Association,
Berkeley, CA, USA (2010)

[10] Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques
for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) Formal Methods for Eternal
Networked Software Systems (SFM’11). LNCS, vol. 6659, pp. 53–113. Springer, Berti-
noro, Italy (2011)

[11] Foster, N., Freedman, M.J., Guha, A., Harrison, R., Kata, N.P., Monsanto, C., Reich, J.,
Reitblatt, M., Jennifer, R., Schlesinger, C., Story, A., Walker, D.: Languages for Software-
Defined Networks. In: Software Technology Group (2016)

[12] Foster, N., Freedman, M.J., Harrison, R., Monsanto, C., Walker, D.: Frenetic, a Network
Programming Language. In: Proceedings of the 16th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’11) (2011)

[13] Garcı́a, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection
methods. Comput. Secur. 45, 100–123 (Sep 2014). doi:10.1016/j.cose.2014.05.011

[14] Handley, M.J., Rescorla, E., Internet Architecture Board: Internet Denial-of-Service Con-
siderations. RFC 4732 (Dec 2006). doi:10.17487/RFC4732

[15] Hurel, G., Badonnel, R., Lahmadi, A., Festor, O.: Behavioral and Dynamic Security
Functions Chaining for Android Devices. In: Proceedings of the 11th IFIP/IEEE/ACM
SIGCOMM International Conference on Network and Service Management (CNSM’15)
(2015)

[16] Hurel, G., Badonnel, R., Lahmadi, A., Festor, O.: Towards Cloud Based Compositions of
Security Functions for Mobile Devices. In: IFIP/IEEE International Symposium on Inte-
grated Network Management (IM’15) (2015)

[17] Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., Clark, R.: Kinetic: Verifiable
Dynamic Network Control. In: Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15) (2015)

[18] Lahmadi, A., Beck, F., Finickel, E., Festor, O.: A platform for the analysis and visualiza-
tion of network flow data of android environments. IFIP/IEEE International Symposium
on Integrated Network Management (IM) (May 2015). doi:10.1109/INM.2015.7140443,
poster

[19] Malkin, G.S., Parker, T.L.: Internet Users’ Glossary. RFC 1392 (Jan 1993).
doi:10.17487/RFC1392

[20] Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S.: Automated factorization of security
chains in software-defined networks (2018), submitted for publication

AVoCS 2018 18 / 19

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.17487/RFC4732
http://dx.doi.org/10.1109/INM.2015.7140443
http://dx.doi.org/10.17487/RFC1392

ECEASST

[21] Schnepf, N., Merz, S., Badonnel, R., Lahmadi, A.: Automated verification of security
chains in software-defined networks with Synaptic. In: Proceedings of the 3rd IEEE Con-
ference on Network Softwarization (NetSoft’17) (2017)

[22] Schnepf, N., Merz, S., Badonnel, R., Lahmadi, A.: Towards generation of SDN policies for
protecting android environments based on automata learning. In: Proceedings of the 16th
Network Operations and Management Symposium (IEEE/IFIP NOMS’18) (2018)

[23] Sperotto, A.: Flow-based intrusion detection. Ph.D. thesis, University of Twente (2010).
doi:10.3990/1.9789036530897

19 / 19 Volume XXX (2018)

http://dx.doi.org/10.3990/1.9789036530897

	Introduction
	Related work
	Background on network security
	Network flows and considered attacks
	Network programming with Pyretic
	Focus on Android environments
	Automated network profiling of Android applications

	Automated synthesis of chains of security functions
	Representing flows, traces, and security functions
	Classifying flows for learning security requirements
	Inferring a high-level representation of the chain
	Generation of a Pyretic implementation of the chain

	Performance evaluation
	Correctness properties of the generated chains
	Packet routing
	Shadowing freedom and coherence

	Conclusions and future work

