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Abstract: Model transformation plays a central role in Model-Driven Engineer-
ing (MDE) and supporting bidirectionality is a current challenge with important
applications. Triple Graph Grammars (TGGs) are a formally founded, bidirectional
model transformation language shown by numerous case studies to be promising
and useful in practice. TGGs have been researched for more than 15 years and
multiple TGG tools are under active development. Although a common theoreti-
cal foundation is shared, TGG tools differ considerably concerning expressiveness,
applicability, efficiency, and the underlying translation algorithm. There currently
exists neither a quantitative nor a qualitative overview and comparison of TGG tools
and it is quite difficult to understand the different foci and corresponding strengths
and weaknesses. Our contribution in this paper is to develop a set of criteria for com-
paring TGG tools and to provide a concrete quantitative and qualitative comparison
of three TGG tools.

Keywords: bidirectionality, triple graph grammars, MoTE, TGG Interpreter, eMoflon

1 Motivation

Triple Graph Grammars (TGGs) [KLKS10] are a formally founded, rule-based and declarative
bidirectional model transformation language, shown by numerous case studies [GNH10, GR12,
LSRS10] to be promising and useful in practice. TGGs have been researched for more than 15
years and there are currently multiple implementations, all being actively developed. Although a
common theoretical foundation is shared, these implementations differ in expressiveness (what
features are supported), applicability (what limitations are imposed), efficiency (strategies to
ensure polynomial runtime), and the underlying translation algorithm (choice and sequence of
rule applications). As neither a quantitative nor a qualitative overview and comparison of TGG
tools exists, it is quite difficult to understand their different strengths and weaknesses.
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Our contribution in this paper is to provide (1) a set of criteria for comparing TGG tools,
and (2), based on these criteria, a concrete quantitative and qualitative comparison of three TGG
tools with fundamentally different approaches: MoTE,1 the TGG Interpreter,2 and eMoflon.3 We
also provide (3) a discussion of formal guarantees and restrictions, and (4) virtual machines via
Share [VM11] with a complete installation of each implementation to complement this paper.
Our work is a first step towards a benchmark for TGG tools that can be extended to test and
evaluate other existing tools or new ones. Our results can be used as a guideline for choosing the
appropriate TGG tool for a specific task.

Section 2 compares our contribution to existing surveys, while Sect. 3 introduces TGG fun-
damentals and gives an overview of a schematic TGG control algorithm. Our criteria for the
comparison are discussed in Sect. 4 and used in Sects. 5–7 to present each implementation with
a qualitative comparison. This comparison is summarized in Sect. 8. Section 9 complements this
with runtime measurements, while areas of future work are discussed briefly in Sect. 10.

2 Related Work

The feature-based survey of model transformation approaches by Czarnecki and Helsen [CH06]
regards directionality, incrementality, and the way transformation rules are specified. With a
similar goal, Mens and van Gorp [MV06] propose a taxonomy of model transformations, but
focus more on the transformation scenario than on the model transformation approach. Their
classification includes not only the number of source/target models and different kinds of trans-
formations, but also quality aspects of the language/tool, like usability or performance. Another
survey by Stevens [Ste08] focuses on bidirectional transformations and investigates more formal
aspects of different approaches. In contrast to these broad surveys, we identify relevant criteria
and conduct a quantitative and qualitative comparison of three concrete TGG tools.

The Model Transformations in Practice Workshop (MTIP 2005) [BRST06] sought to estab-
lish a benchmark for (bidirectional) model transformations with the Class Diagram to Data-
base (CDDS) transformation as an example. The solutions submitted, however, often modified
the example to fit the respective tool, leading to multiple variants and simplifications that do
not allow an objective comparison of the tools. In particular, no quantitative, i.e., performance
comparison was provided by the different solutions. Other papers [GH09, HEGO10] do present
a performance evaluation, but only of a single tool in each case. In this paper, we formalize the
CDDS example for TGG tools by providing not only metamodels but also a TGG to test and
compare the TGG tools. Although the example had to be simplified so that all three tools could
be used, we are able to provide, for the first time, a runtime comparison of three TGG tools.

We provide virtual machines via Share [VM11] with a complete installation for each tool:
[Onl12]. The interested reader is welcome to try out the tools. Our single example is by no
means a complete benchmark, but it is a first step in the right direction and must be extended
in the future to cover further tools and, more importantly, a series of examples and different
transformation scenarios such as in Varró et al. [VSV05] for graph pattern matching.

1 www.mdelab.de/mote/
2 www.cs.upb.de/index.php?id=tgg-interpreter
3 www.emoflon.org
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3 Foundations and Running Example

Our running example is inspired by Bézivin et al. [BRST06] and is a variant of the well-known
bidirectional transformation from class diagrams to database schemata. Figure 1 depicts a con-
crete class diagram on the left, and the corresponding database schema on the right. A class
diagram consists of classes such as Bank, Client and Account, and of associations between
these classes such as clients between Bank and Client. Furthermore, each element in the
class diagram has a unique ID: 01 for Bank, 02 for clients, etc. In the domain of database
schemata, tables such as Bank 01, Client 03 and Account 05 have columns. In each ta-
ble, exactly one column is designated as the primary key of the table (named “PK”), while all
other columns (e.g., the column “clients::02” in Bank 01) are foreign keys that reference other
tables (indicated with arrows). A class obviously corresponds to a table with a primary key, while
associations correspond to foreign keys. Please note the correspondences between the names and
IDs of classes and the IDs of tables (e.g., Bank, 01 and Bank 01), and the names and IDs of
associations and the names of columns (e.g., clients, 02 and clients::02).

Bank

Client

Account

clients

accounts

accounts

01
02

04

03

05

06

Bank_01

PKPK

clients::02FK

accounts::06FK

Account_05

PKPK

Client_03

PKPK

accounts::04FK

Class Diagram Database Schema

Figure 1: A class diagram and corresponding database schemata

Triple Graph Grammars (TGGs) provide a declarative, rule-based means for specifying bidi-
rectional transformations. A TGG consists of a set of rules that describe how related models
from a source domain (class diagrams) and from a target domain (database schemata) can be
produced simultaneously. A third model (hence triple graph grammars) is created in the process
and can be viewed as a set of traceability links between corresponding model elements from the
source and target domains. A TGG can be used to generate a set or language of triples of source,
correspondence and target models and can be viewed as a consistency relation; a source (MS) and
target (MT ) model are consistent with respect to a given TGG, if a triple of models MS, MC, MT ,
denoted as MS ←MC →MT , can be generated with the TGG, where MC is the correspondence
model. Our goal in this paper is to impart a clear intuition for the core concepts of TGGs and we
refer to [EEE+07, KW07, GHL10, KLKS10] for further details.

Fig. 2 depicts a TGG rule for our running example. A rule r = (L,R) consists of a precondition
L and a postcondition R, both typed graphs (structures consisting of nodes and links with types)
representing model fragments that conform to the specified triple of metamodels. The rule can be
interpreted as follows: if an occurrence or match can be found for the precondition L in a given
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model M, then the rule r can be applied to the model M to yield a new model M′ by replacing
the determined match of L with R. The rule r, depicted in Fig. 2, requires an already related
triple of class diagram, correspondence, and database schema (created using a different rule) and
extends this triple by adding a new class to the class diagram and a corresponding new table with
its primary key column. Elements in L and R\L are referred to as context and created elements,
respectively. TGG rules have been extended formally to handle attributes in the related models
[AVS12]. In Fig. 2, the attribute formula specifies that the table’s UID must correspond to the
concatenation of the name, an underscore, and the id of the corresponding class.

classDiagram:
ClassDiagram schema: Schemacd2s:

ClassDiagramToSchema

clazz: Clazz table: Tablec2t: 
ClazzToTable

primaryKey:
Column

+columns

+elements +tables

+target+source

+target+source

classDiagram:
ClassDiagram schema: Schemacd2s:

ClassDiagramToSchema
+target+source

:-

L R
clazz.name + ‘_’ + clazz.id = table.UID

Figure 2: TGG rule ClassToTable in formal syntax

Although TGG rules can be used to produce source and target models simultaneously, the real
potential of TGGs lies in the automatic derivation of operational forward and backward transfor-
mation rules. From the TGG rule r (Fig. 2), an operational forward rule r f can be derived, which
differs from r in that it translates all create elements in the source domain and only creates new
elements in the correspondence and target domains. Deriving operational rules is straightfor-
ward: the precondition of a rule is extended to include all elements created in the source domain.
To create valid triple models with these rules, however, it must be ensured for the existing source
model that (i) context nodes in rules are only matched to translated host graph nodes, and (ii)
created nodes in rules are only matched to host graph nodes that have not yet been translated. A
backward rule is derived analogously. Attribute values are assigned based on attribute formulae,
which are either automatically computed from the attribute formula or provided explicitly by the
user. Although attributes can be regarded formally as separate nodes, most implementations treat
attributes as primitives and only allow assignment of attributes for created nodes in rules, i.e.,
attributes of context nodes cannot be created or deleted.

Given a source model MS, a forward transformation can be executed by applying forward rules
derived from the TGG to translate MS and yield a triple MS←MC→MT , which could have been
generated by using TGG rules. An important question is under which conditions this is always
possible, and formal results from [EEE+07] prove existence and uniqueness provided that TGG
rules are non-deleting, namely, L ⊆ R, which is the case for the three considered tools. The
proof in [EEE+07] is however not constructive and the task of determining the correct sequence
of forward rule applications remains a challenge and a point where the different TGG tools
diverge. The derived operational rules can be used in various scenarios, e.g., to create a consistent
triple of models MS ←MC →MT from a given input model MS (a batch transformation), or to
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incrementally update a triple MS ← MC → MT to result in a consistent triple M′S ← M′C → M′T
(an incremental transformation) given the changes that produced M′S from MS.

A TGG tool, therefore, requires a control algorithm to (i) determine a traversal order through
the input model and (ii) choose the right rule to process each model element. To commence
the transformation, a starting node in the input model and an operational rule to translate this
node must be determined. Such a valid starting rule without any context elements, i.e., no pre-
condition, is referred to as an axiom. After the first node is translated, a strategy is required
to systematically cover all elements in the input model in an appropriate order. In general,
more than one rule can be applicable for the current node to be translated and making the right
choice requires backtracking to undo wrong decisions. This is, however, inefficient (exponential
runtime) and most TGG tools restrict the class of supported TGGs to avoid backtracking.

4 Criteria for Comparison

Figure 3 depicts a schematic architecture of a TGG implementation. The transformation designer
(Fig. 3::1, i.e., label 1 in Fig.3) specifies the bidirectional transformation as a TGG. The end user
(Fig. 3::2) is mainly interested in the implemented transformation and uses this as a black box.
In many scenarios, both users are actually the same person; the transformation designer, for
instance, needs to test and refine the TGG, thus temporarily taking on the role of the end user.

Transformation Designer

End User

Specification 
Environment

Integration 
Environment

Frontend Backend

TGG Rules

Operational 
Rules

Control Algorithm

1

2

3

4

5

6

7

8

Figure 3: Schematic Architecture of a TGG Implementation

There is normally a clear separation between a front end and a back end. The front end can
be divided into two parts: a specification environment (Fig. 3::3) used by the transformation de-
signer to specify the involved metamodels and rules, and an integration environment (Fig. 3::4),
with which the end user can run the transformation, view the results, and understand the transfor-
mation process. Depending on the concrete TGG tool, these might be clearly separated or form
a single front end component. The front end and back end must be connected (Fig. 3::5) either
via an import/export persistence format or an API. This again depends on whether the front end
and back end are realized in completely separate tools or not.

The back end consists of data structures for the metamodels and the TGG rules (Fig. 3::6).
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Depending on the concrete TGG tool, there might also be explicit data structures for the oper-
ational rules (Fig. 3::7) used by a control algorithm (Fig. 3::8). Operational rules are, however,
optional as an interpreter might use the TGG rules directly.

We consider the following groups of criteria to be most important when comparing TGG
implementations from a practical point of view:
Usability (U): The first hurdle when using a new tool is getting it installed and properly con-
figured (U1). This task should be supported with an installer, a sensible default configuration,
tutorials, interactive help in the tool, and examples. The transformation designer requires a suit-
able concrete syntax (U2) (visual or textual) with which TGG rules can be specified. Equally
important is a thorough static analysis (U3) and numerous sanity checks to identify modeling er-
rors early in the process and offer possible fixes. Tool support should also be provided to increase
productivity (U4), such as refactorings, or automatic rule derivation from other rules.

At this point, a clear workflow (U5), stating which steps have to be taken in what sequence,
becomes crucial, especially if there is an explicit switch between specification and integration
environments. Furthermore, the end user requires support to configure and invoke the transfor-
mation (U6) for an input model, and a means of visualizing the resulting triple (U7) in such a
way that the translation process can be understood.
Expressiveness (E): A central question is if a chosen TGG tool is expressive enough to describe
a required transformation. Here, we limit ourselves to important features of the considered tools,
meaning that this list is to be extended when comparing other tools.

(Negative) application conditions (E1) restrict the applicability of a rule to certain cases. To
translate attributes, the tools use different types of attribute constraints (E2). Attribute con-
straints may be unidirectional, i.e., there must be two constraints (forward and backward). With
bidirectional attribute constraints, there is only a single constraint that is used for both forward
and backward transformations. Some tools allow the transformation of single edges (E3), i.e.,
rules where only edges are created in a triple rule. This requires explicit bookkeeping of the
transformed edges. Tools may impose restrictions on the connectivity of the rules (E4), e.g.,
require them to be strongly connected or to be just weakly connected. Without any restrictions,
rules may even consist of disjunct components.

TGG tools usually have to find a compromise between expressiveness on the one hand and
efficiency and formal properties on the other. Therefore, each tool appropriately restricts the
class of supported TGGs (cf. properties F1 and F2).
Formal Properties (F): Every TGG tool is expected to be correct (F1), complete with respect
to the class of supported TGGs (F2) and efficient for batch (F3) and incremental (F4) transfor-
mations. According to [KLKS10], these properties are defined as follows:

Correctness: Given an input model Mi, the resulting triple Mi←MC →Mo created by a for-
ward/backward transformation must be a member of the language generated by the TGG.

Completeness: Every input model that can (in theory) be extended to a consistent triple must
be extended to a consistent triple by the forward/backward transformation.

Efficiency: For a batch transformation, the transformation must have polynomial runtime com-
plexity (nk) w.r.t. the number of model elements (n) and the maximal number of elements (k) in
a single rule of the TGG. In the incremental case, the runtime must scale w.r.t. the number of
changes to be propagated incrementally and not with the size of the involved models.
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Besides correctness, which ensures that results of a forward/backward transformation never
contradict the given TGG, it is also useful to guarantee completeness at least for a certain class
of TGGs. If a transformation fails with a complete tool, the user knows for sure that either
(i) the input model is invalid, i.e., cannot be completed to a valid triple, or (ii) the given TGG
is not in the class of TGGs supported by the tool, which must be clearly defined when proving
completeness. In practice, to ensure efficiency, most TGG tools are correct and complete only
for a certain subset of all possible TGGs, i.e., each implementation poses a different set of
limitations on valid TGG rules. This is one of the factors that make it difficult to use different
TGG tools and is to be addressed in this paper. Nevertheless, these properties can be guaranteed
by formalizing the core algorithm of an approach and arguing that they hold at least at this level
of abstraction. Tests and actual measurements are of course necessary to support such claims,
and a series of benchmarks in a controlled testing framework are some of the steps taken in this
paper to achieve this goal.

In the following, we present three TGG tools and enable a qualitative and quantitative com-
parison using the criteria defined in this section.

5 MoTE (Hasso-Plattner-Institute)

MoTE (Model Transformation Engine) is an EMF-based model transformation tool that supports
bidirectional model transformation and synchronization (or incremental updates).
Usability: MoTE can be installed via the Eclipse Update Manager from the MDELab update site.
An example transformation can be installed and user documentation is available via the Eclipse
help system (U1). A GMF-based editor is provided to specify TGG rules using the common TGG
visual concrete syntax, where LHS and RHS are presented in a combined notation using colors to
differentiate context (black) from created (green and marked with the <<create>> stereotype)
elements (Fig. 4) (U2). In MoTE, TGG rules can have rule parameters, which specify values to
be assigned to created elements when the TGG rules are applied directly to create both models as
used in the automatic conformance testing framework [HLG+12]. The derived operational rules
calculate the values of rule parameters using the provided forward and backward expressions
(denoted with f and b). The editor also provides a comprehensive validation of TGG rules (U3).
A wizard is provided to create a new TGG rule project with an initial TGG axiom and a first
incomplete TGG rule (U4). After completing the specification, the transformation developer
can derive operational rules by executing a designated workflow4 file, which additionally creates
configuration files and Java code to invoke the operational rules (U5). Finally, the TGG rule
project has to be deployed as an Eclipse plugin, which is discovered by MoTE via the extension
mechanism in Eclipse. A model transformation or synchronization can be invoked either via
its Java API, with the appropriate wizard from the Model Transformations menu, or as part of
a workflow (U6). In addition, a testing framework is provided [HLG+12], which can be used
to generate random test models and test the TGG. This allows the transformation developer to
validate whether his TGG behaves as expected.

4 MDELab workflows (http://www.mdelab.de/workflow/) can be used to automate certain modeling tasks by plugging
together workflow components, e.g., a component to read a model, a component to transform this model to a target
model, and another component to save the target model to disk.
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Figure 4: The Clazz2Table rule in MoTE’s TGG editor

Expressiveness: MoTE has been used successfully in an industrial case study [GNH10] to inte-
grate a SysML and an AUTOSAR modeling tool. TGG rules are compiled to Story Diagrams,5

which are interpreted by a Story Diagram Interpreter [GHS09]. MoTE is EMF-based and sup-
ports constraints and attribute assignments in OCL or Java. Attribute assignments, however, have
to be specified for each direction separately (E2). Currently, MoTE does not support (negative)
application conditions (E1) and rules that create edges between context nodes (E3). Further-
more, some restrictions are imposed on the structure of valid TGG rules to be able to formalize
the transformation algorithm and ensure comparably high transformation efficiency (E4).
Formal Properties: The batch transformation algorithm in MoTE is formalized in [GHL10],
defining the exact restrictions imposed on valid TGG rules and proving correctness (F1), and
completeness (F2) for TGGs that exhibit functional behavior [HEGO10]. Functional behavior
means that the result of a transformation is unique up to isomorphism and can be viewed, de-
pending on the application scenario, either as a limitation, or as a useful property. A TGG has
functional behavior if it is terminating, which is ensured by checking the structure of TGG rules,
and if its rules do not conflict, which can be checked via a critical pair analysis. However, this is
not yet supported in the current MoTE release. MoTE supports batch (F3) and incremental (F4)
transformations, which have been shown to be efficient (see Sect. 9 and [GH09]).

Regarding the underlying control algorithm; MoTE requires a designated starting node (typi-
cally the root node of an EMF model) and only allows exactly one axiom in the TGG. To drive
the transformation process, MoTE takes the following approach: Each rule creates exactly one

5 Programmed graph transformations for specifying unidirectional model transformation.
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correspondence node and requires a set of correspondence nodes as context. The derived oper-
ational rules create a link between context and the created correspondence node. This results in
a directed acyclic correspondence graph, which also represents dependencies between applied
rules. After the axiom is applied to create a single correspondence node c, all rules that require
c as context are applied with c as the entry point for pattern matching to translate and create
further elements in the input and output models respectively. Each rule that transforms an ele-
ment also creates a new correspondence node and the process is repeated until it terminates (a
correspondence node is created which is not required by any other rule). This allows for efficient
pattern matching and also reduces the number of rules that must be checked for applicability in
each step. MoTE does not support backtracking, which is one reason why a TGG must have
functional behavior.
Current and Future Focus: Due to the widespread use of model transformations in MDE, the
quality of model transformations has to be ensured. Conformance testing of model transforma-
tions is, therefore, still an important and open issue. Current development focusses on improving
and extending the automatic conformance testing framework presented in [HLG+12], and gener-
alizing it to support and test transformations specified with other transformation languages, not
only TGGs.

6 The TGG Interpreter (University of Paderborn)

The TGG Interpreter is a TGG model transformation and incremental update tool that was de-
veloped as a result of comparing TGGs and the OMG standard for (bidirectional) model trans-
formations, Query/View/Transformation QVT [GK07, GK10].
Usability: The TGG Interpreter is Eclipse-based and can be installed via the Eclipse Update
Manager (U1). Figure 5 depicts a screenshot of the TGG rule editor showing a visual concrete
syntax similar to all other tools (U2).

Several sanity checks (e.g., node/edge type conformance, rule inheritance validity, OCL syn-
tax checks, etc.) are performed statically to prevent modeling errors (U3). However, there is no
support for critical-pair analysis in order to identify possibly conflicting rules. A GMF editor
is provided for editing TGG rules along with convenience functionality, e.g., creating new rules
based on patterns in other rules, and creating correspondence types on-the-fly for correspon-
dence nodes (U4). The TGG Interpreter directly executes TGG specifications without further
processing (U5). It integrates itself into the Eclipse GUI, allowing performing transformations
by right-clicking on a model file or via an Eclipse Run Configuration (U6). Transformations can
also be executed programmatically via an API call.

An additional plugin, the Correspondence View, can be used to visualize the results of a trans-
formation. It shows the concrete syntax of both models side-by-side, allowing the user to visu-
alize corresponding elements in the models. A transformation designer can use the debug mode
(Fig. 5) to inspect the transformation and pattern matching process (U7).
Expressiveness: Application conditions (E1) and attribute constraints (E2) can be formulated in
OCL, but bidirectional relations on attribute values have to be expressed as assignments in the
forward and backward direction. No strong restrictions are imposed on the structure of TGG
rules, i.e., patterns need only be weakly connected (E4), edges can be created between context
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Figure 5: TGG Rule Editor of the TGG Interpreter during Debugging

nodes (E3), and correspondence nodes can be connected to source and target elements as the
user wishes. The TGG Interpreter supports advanced TGG concepts such as a form of rule
inheritance, stereotypes in UML domains, and reusable nodes and patterns to retain information
in the incremental case [GR12].
Formal Properties: The TGG Interpreter is correct (validated but not formally verified) (F1),
but not complete (F2) in general, due to a lack of backtracking/look-ahead functionality. Thus,
similar to MoTE, it may fail to find a correct sequence of rule applications to match a given
source model when more than one rule is applicable. A static analysis to check these conditions
is currently not provided. As the TGG Interpreter directly interprets the TGG and, moreover,
supports advanced features such as explicit edge bindings, it is outperformed by both other tools
(cf. Sect. 9), but is still efficient enough for most practical cases (F3). Furthermore, as the TGG
is interpreted to perform the transformation, it can be updated on-the-fly during a transformation
without needing to recompile or compute anything. Like MoTE, the TGG Interpreter also sup-
ports incremental updates (F4). Regarding the control algorithm; the TGG Interpreter requires
a designated starting node, only allows exactly one axiom in the TGG, and requires functional
behavior to avoid backtracking. The input model is traversed by driving a front consisting of the
current set of translated nodes, which is extended by examining all elements that can be reached
from the front via a single edge. Only these front-extension elements are considered in the next
step limiting the search for applicable rules to only those that require a front element and translate
a front-extension element. The process terminates when the front can no longer be extended.
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Current and Future Focus: Current development on the TGG Interpreter is in the direction
of (i) support for improved algorithms for incremental updates [GPR11] and conflict resolution,
(ii) a static analysis to identify conflicting rules (F2), and (iii) support for non-functional trans-
formations [RS12]. Furthermore, performance optimization is planned as future work.

7 eMoflon (Technische Universität Darmstadt)

eMoflon [ALPS11] is a tool suite for metamodeling and model transformation. Hence, not only
bidirectional model transformation with TGGs is supported, but also unidirectional model trans-
formation with Story Diagrams, and metamodeling with Ecore/EMF. eMoflon aspires to provide
a complete environment for all required activities (cf. the online demo via Share [Onl12]).
Usability: A detailed tutorial (available at www.emoflon.org) describes the few steps required
to get eMoflon up and running. The specification and integration environment are provided as
plugins of separate tools: an extension for Enterprise Architect (EA) and an Eclipse plugin. EA
is a professional UML tool and has proven to be advantageous for visual modeling as opposed
to, e.g., GMF [ALPS11].

Installing eMoflon (U1) only requires clicking through a Windows Installer for the EA ex-
tension, and installing an Eclipse plugin. Figure 6(a) depicts the Clazz2Table TGG rule in EA.
The eMoflon concrete syntax (U2) is visual and uses a compact (merged) representation. Cur-
rently, the eMoflon frontend only runs on Windows, but an alternative specification environment
in Eclipse with a textual concrete syntax is under development.

(a) eMoflon Specification Environment (b) eMoflon Integration Environment

Figure 6: TGG rule specification in EA (left) and runtime integration environment (right)
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Specifying TGGs in EA (Fig. 6(a)) is supported by a substantial static analysis (U3). Editor
features support productivity (U4), e.g., via the automatic derivation of TGG rules from other
rules or from a choice of metamodel elements. The workflow (U5) is completed by exporting
the specification from EA (simple context menu) and switching to the corresponding Eclipse
workspace. The generated transformation code can be invoked (U6) by executing an automat-
ically generated Java main method. The resulting triple created by the transformation can be
visualized (U7) and stepped through using an integrator (Fig. 6(b)). This GUI component visu-
alizes a triple of models in a matrix, i.e., the correspondence graph is visualized as links between
two trees. A protocol containing a trace of the whole transformation process can be used to step
through the transformation and understand which rules were applied when and why to which
elements (colors indicate different states of elements during the transformation). As regions can
be collapsed in the integrator (Fig. 6(b)) and programmable breakpoints can be provided to navi-
gate directly to interesting situations, models with up to about 800 - 1000 nodes can be analyzed
successfully, depending of course on how interconnected the nodes are.
Expressiveness: eMoflon uses CodeGen2 from the Fujaba tool suite as its underlying graph
pattern matcher. TGGs are compiled to Story Diagrams6 with Story Diagrams, which are then
compiled with CodeGen2 to plain EMF code. In addition to basic graph patterns, negative appli-
cation conditions [AST12] (E1) and flexible, bidirectional attribute manipulation [AVS12] (E2)
are supported in TGG rules. The latter is achieved via in node attribute assignments, such as
for pk:Column (cf. Fig. 6(a)), and via a bidirectional and extensible constraint language, such
as for concatenating class names and table IDs. Additionally, TGG rules are allowed to only
transform edges (E3). Regarding the connectivity of the rules (E4), the underlying graph pattern
matcher requires to have weakly connected patterns in the source and target domain of a rule.
Formal Properties: The eMoflon TGG tool is based on the algorithm of [KLKS10], which has
been shown to be correct (F1), complete for a certain class of TGGs (F2), and efficient (F3).
eMoflon is not yet incremental (F4) but the incremental TGG control algorithm presented in
[LAVS12] is currently being implemented.

The control algorithm of eMoflon can start with any node in the input model and handle
arbitrary many axioms. TGGs are not required to be functional and a look-ahead is used to
resolve local rule choices by inspecting edges that can no longer be translated if a wrong choice
is made (Dangling Edge Check (DEC)). For efficiency, eMoflon only supports a look-ahead of
one edge (DEC 1) from the current node to be translated, i.e., the class of supported TGGs is
limited to local complete TGGs where DEC 1 is sufficient to resolve conflicts. In cases where
multiple choices are correct, i.e., there is a true degree of freedom in the translation, eMoflon
asks a component (the user, a configuration file, algorithm, etc.) to decide. Note that the set of
local complete TGGs subsumes the set of functional TGGs, which only require “DEC 0”.

Regarding the traversal order; this order is determined on-the-fly in a context-driven manner.
All context nodes required by each potential rule are recursively translated, which automatically
induces a feasible order in which all elements of the input model can be translated success-
fully. Please note that this recursive, eager and context-driven transformation strategy works for
the supported class of TGGs, which is precisely defined in [KLKS10] with a description of all
runtime exceptions that are thrown when a required restriction is violated.

6 Story Diagrams are a combination of UML Activity Diagrams and graph transformations.
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Current and Future Focus: Current and future development on eMoflon is in the direction of
(i) implementing the incremental algorithm presented in [LAVS12] and investigating/evaluating
other strategies for supporting incremental transformations with TGGs, (ii) providing a rich static
analysis based on first ideas presented in [AST12], (iii) investigating and implementing advanced
modularity concepts for TGGs, (iv) providing a textual concrete syntax for TGGs (and eMoflon
in general), and (v) extending the general framework for bidirectional model-to-text transforma-
tions with TGGs presented in [ASRS12].

8 Summary of Qualitative Comparison

Table 1 summarizes the comparison based on criteria from Sect. 4 ( denotes “sufficient/good”,
G# “can be improved”, and # “missing/inadequate”). In general, there is no “single best” tool;
all three tools have their own strengths and weaknesses.

U1 U2 U3 U4 U5 U6 U7 E1 E2 E3 E4 F1 F2 F3 F4
MoTE  G# G# G#   # G# G# # G#   G#  
Interp.  G# G#    G# G# G#    G# G#  

eMoflon G# G# G#  G#  G#    G#  G#  #

Table 1: Summary of the Qualitative Comparison of the three TGG Implementations

Some observations are: eMoflon’s installation process is a bit complex as two separate tools
are used (U1), an alternative textual concrete syntax for TGGs is currently missing in all tools (U2),
all tools should be improved regarding static analyses (U3), and MoTE can be improved regard-
ing the visualization of results and the transformation process (U7).

MoTE has the strongest restrictions on TGG rules (E1 to E4), the TGG Interpreter allows
the most flexible patterns (E4), and only eMoflon supports true bidirectional attribute con-
straints (E2). Although bidirectional constraints guarantee that a TGG works bidirectionally,
note that unidirectional constraints are more expressive in some cases.

All tools are correct (F1), but a formal proof for completeness (F2) only exists for MoTE’s and
eMoflon’s transformation algorithm. eMoflon supports a larger class of TGGs than both MoTE
and the TGG Interpreter, is fastest (F3) on the example scenario (cf. Sect. 9), but does not yet
support incremental transformations (F4).

9 Quantitative Comparison (Runtime Measurements)

To allow a first estimation of the batch transformation performance of the tools, we conducted
a benchmark, in which each tool was used to translate the same set of models using the trans-
formation presented in Sect. 3. This quantitative assessment was not conducted for incremental
transformations, as this is not yet fully supported by all tools (cf. Sect. 8). Using the model gen-
erator of the TGG test framework [HLG+12] (part of MoTE), random test models were created.
In total, 19 random class diagram test models were generated with 100, 200, ..., 1000 elements
and 2000, 3000, ..., 10000 elements. The average execution times were calculated after each
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Figure 7: Runtime Measurement Results for Forward Transformation

TGG tool transformed each class diagram 20 times. The measurements were conducted on a
Windows 7 x64 PC with an Intel i5 750 (2.66 GHz) processor, Oracle JDK 1.7, and Eclipse
4.2. The class diagram and database schema metamodels and all test models are available for
download.7

The average execution times for all tools and model sizes for the forward and the backward
transformation are depicted in Fig. 7 and 8. Note that a logarithmic scale is used for the Y-axis.
A vertical line indicates where the X-axis scaling changes.

For the forward transformation, the results show that eMoflon (green solid curve), the only
tool that generates Java code from TGG rules, is faster than the TGG Interpreter (red dotted
curve), which interprets TGG rules directly, and MoTE (blue dashed curve), which interprets
operational rules as Story Diagrams. The difference between eMoflon and MoTE (8s/20s for
10000 elements) is, however, considerably smaller than that between eMoflon and the TGG
Interpreter (8s/367s for 10000 elements). This is probably due to the dynamic pattern matching
strategy of the story diagram interpreter [GHS09], and MoTE’s algorithm (see Sect. 5), in which
the application of the next TGG rule is guided by dependencies in the correspondence model;
both perform well in this scenario.

The TGG Interpreter is faster when transforming backwards than when transforming forward
in this scenario. MoTE is also faster for models with more than 700 elements. Interestingly,
eMoflon is slower in the backward direction than in the forward direction for models with more
than 300 elements, infact, MoTE outperforms eMoflon when transforming backwards for model
with more than 2000 elements.

The different results for forward and backward transformations indicate that the matching
and transformation strategies implemented in the tools are quite different and have a significant
impact on the overall performance. To make any general conclusions, however, other transfor-
mation scenarios have to be considered. This is planned as future work.

7 http://emoflon.org/fileadmin/download/eMoflon/bx13 TGG Survey.zip
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Figure 8: Runtime Measurement Results for Backward Transformation

A polynomial runtime (in the size of the input model) is formally proven for eMoflon [KLKS10],
but not for MoTE and the TGG Interpreter. Nonetheless, from our experience, the runtime of the
two latter tools is also polynomial in the size of the input model.

10 Conclusion and Future Work

In this paper, we provide a set of criteria to be used for comparing TGG tools. Based on these
criteria and the well-known class diagrams to database schemata transformation, we presented
a quantitative and qualitative comparison of three actively developed tools: MoTE, the TGG
Interpreter, and eMoflon.

Our results show that the tools vary considerably and have different strengths and weaknesses,
depending on the application scenario and corresponding requirements: A purely interpretative
approach (the TGG Interpreter) is probably the best choice if metamodels are to be used without
demanding generated code, eMoflon is a viable choice if user interaction is to be integrated in
the transformation (i.e., the TGG is non-functional), and MoTE/eMoflon can be used for large
models and in cases where efficiency is paramount. MoTE/the TGG Interpreter are currently
the best choice for incremental updates, and, finally, the TGG Interpreter and eMoflon support
an interesting set of advanced TGG features that might be necessary if high expressiveness is
required.

As future work, we plan to extend the comparison to include further TGG tools and cover a
whole suite of transformations that test different aspects including various kinds of incremental
updates. The vision is to establish a benchmark for TGG tools, which can be used to drive and
measure improvements in the future.
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