
Practical Model Transformation from
Secured UML Statechart into Algebraic Petri Net

Qin ZHANG and Vasco SOUSA
Laboratory for Advanced Software Systems

University of Luxembourg
6, rue R. Coudenhove-Kalergi, Luxembourg

TR-LASSY-11-08

1 Introduction

This is a technique report about model transformation from secured UML Stat-
echart into Algebraic Petri Net, a practical approach. We use a simple example,
object BOOK in library management system, to illustrate the practical rules of
model transformation.

Figure 1 exhibits the secured UML statechart for the logic of the BOOK. In
this statechart, the highlighted content is related to access control policies.

2 Model Transformation Rules

In this section, we illustrate practical rules for model transformation, from se-
cured UML statechart into Algebraic Petri Net.

u : User;
rList : List(User); //reservation list
c : Context;
Borrower ⊆ User; // Borrower is a subclass of User, consisting of Teachers and Students

order[u=Secretary
& c=WorkingDays]

archive[u=Secretary
& c=WorkingDays]

start

Unavailable

borrow[u∈Borrower
& c=WorkingDays]
/registerBorrower(u);

return[u=getBorrower()
& c=WorkingDays]
/removeBorrower();

Available Borrowed

Reserved

reserve[u!=getBorrower()
& u not in rList
& c=WorkingDays]
/registerReserver(u, rList);

cancel[getBorrower=null
& u in rList
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);

cancel[getBorrower!=null
& u in rList
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);

borrow[getBorrower=null
& u=head(rList)
& size(rList)=1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

Published

Ordered

return[u=getBorrower()
& c=WorkingDays]
/removeBorrower();

borrow[getBorrower=null
& u=head(rList)
& size(rList)>1
& c=WorkingDays]
/removeReserver(u, rList);
registerBorrower(u);

cancel[u in rList
& size(rList)>1
& c=WorkingDays]
/removeReserver(u, rList);

Access Control Policies:

Permission(Secretary, Order, Book, WorkingDays)
Permission(Secretary, Archive, Book, WorkingDays)
Permission(Borrower, Borrow, Book, WorkingDays)
Permission(Borrower, Return, Book, WorkingDays)
Permission(Borrower, Reserve, Book, WorkingDays)
Permission(Borrower, Cancel, Book, WorkingDays)

Missing: u∈Borrower

Figure 1: UML statechart of object BOOK

2

2.1 Decompose Composite State

Since the target model, Algebraic Petri Net, of the transformation doesn’t have
hierarchical structure, we need first decompose the Composite State in the UML
statechart, to form a flat structure.

Rule 1: Regarding the hierarchical nested states (Composite State), transit
each incoming transition pointed to the composite state to the inner start state;
split each outgoing transition starting from the composite state into transitions
that each of them starting from one sub state; relocate the Entry action of the
composite state to each incoming transitions, either pointing to the composite
state or to sub state, as their event actions; relocate Exit action of the compos-
ite state to transitions starting from the composite state or from sub states but
crossed the boundary of the composite state. Rename the inner start state by
adding the original composite state name, which makes it distinguishable with
the start state of the whole chart.

2.2 Transform Variables and Related Methods

UML statechart is a sub package of object-oriented technique. It may contain
some variables, e.g. parameters of events, and related class methods. They
will be transformed into according Abstract Algebraic Data Types (ADTs here-
inafter) and other components in APN model.

Rule 2: With regard to each type of event parameters and extended state
variables in the UML statechart, create a corresponding ADT with generators
that may generate sufficient data. Then build an according place holding suffi-
cient initial data (tokens). Finally define an according APN variable for it.

In the Rule 2, the sufficient data may be got from other sub packages of
the object-oriented specification, e.g. the class diagram. The usual way is to
enumerate possible instances of related classes.

Rule 3: With regard to each class method related with an event parameter
or extended state variable (normally get/set method) in the UML statechart,
extend the corresponding ADT definition of that variable by adding an opera-
tion to implement the logic of the class method, then build a related place with
this data type and fill sufficient initial tokens (This place simulates the memory
for the variable, so the initial data is usually empty).

In the Rule 3, the logic of added operation in ADT is normally getting or
setting a value. Notice that sometimes the logic of a class method is to empty
the value in a variable, which can be equally treated as setting a NULL value
to this variable. So when extending the ADT definition of that variable in
APN model, besides adding an operation, you also need to supplement a special
generator for the data NULL.

3

Figure 2: Abstract Algebraic Data Type definition of event parameter “user”

Figure 2 shows an example of the ADT definition of the type “user” in the
UML statechart of object BOOK.

2.3 Traceability, Concurrency-breaking and Security

There are some features, mainly traceability, concurrency-breaking and security,
we need to consider when transforming the secured UML statechart into APN
model.

First, under some circumstances, we need to trace a certain component in
the UML statechart after we transformed it into APN model, e.g. locating
an error in UML statechart after model checking of APN. The most important
information we want to trace may be the hazard state and its following transition
which lead to an error.

Notice that there may be some events having duplicated names in the UML
statechart, see events “borrow”, “return” and “cancel” in Figure 1. These events
with duplicated names are actually split from one activity, but lead the object
BOOK to different states based on the variant conditions. However, the access
control policy is defined on the activity, not on the events. So in the future
transformed APN model, the security property, transformed from the access
control policy on the activity, is the same on the transitions transformed from
these events. If the property doesn’t hold by APN model during model checking,

4

Figure 3: ADT of distinguishable event transitions in APN model

we need to trace back to which event is unsecured. Therefore we need to make
the events with duplicated names distinguishable in transformed APN model.

We noticed one aspect of generic state machine that all states are unique,
which means no redundant state names. Further more, the events in the state
machine may have duplicated names, but there are no redundant events between
the same ORDERED-pair of states (here ORDERED means the first state is the
source while the second is the destination). Thus we are able to add source and
destination state names to each event, which makes the events distinguishable.

Rule 4: Build a new ADT to rename all events in the UML statechart, which
make them distinguishable by a naming format:

SourceStateName EventName DestinationStateName.

Figure 3 gives the example of how to define the ADT of distinguishable event
transitions in APN model. Normally we create a generator for each event in the
UML statechart, to rename the according transition in the transformed APN
model abiding the naming format in Rule 4.

Besides the traceability, we also need to consider concurrency in future trans-
formed APN model. It is well-known that Petri Net is a mathematical mod-
eling language which is well suited for description of concurrent behavior of
distributed systems. Execution of Petri Nets is nondeterministic: when multi-
ple transitions are enabled at the same time, any one of them may fire. If a

5

transition is enabled, it may fire, but it doesn’t have to. However, the UML
statechart doesn’t hold the concurrency as that in APN model. At any time,
there is only an adjacent set of states, pointed by the state transitions from
current state, is available to be reached, depending on the nondeterministic
event occurrence. Therefore, we need to eliminate the concurrency feature of
the transformed APN model, to insure its semantic logic doesn’t exceed that of
original UML statechart.

To achieve the concurrency-breaking goal, we think about defining a special
token, called indicator, to restrict which transition may fire so that “indicating”
according active state in the original UML statechart. The indicator token is
used to insure the simulation of transitions among states in UML statechart:
at any time, there is one and only one indicator token in the APN model that
makes only the transitions following the place holding this indicator token may
fire. This simulation mechanism breaks the concurrency of APN model that
insures its semantic logic in accordance with source UML statechart.

Finally, to check the security properties, transformed from access control
policies, in future APN model, we need to record corresponding necessary in-
formation when a secure transition fires, e.g. user and context. It’s naturally
to think that the indicator is a proper component in the APN model to realize
this objective for security checking purpose, since it doesn’t conflict with the
concurrency-breaking feature when we add some security related information to
this special token.

In summary, since the transitions in APN model are distinguishable, accord-
ing to Rule 4, if one transition fired but led to a hazard state, we could quickly
trace back to the unsecured or faulty event in the UML statechart by parsing
the transition’s name (it contains the information of source state name, event
name and destination state name in the UML statechart). Thus we need to
record the transition name somewhere when it fires. Meanwhile, for checking
the security properties, transformed from the access control policies, we also
need to record necessary bounded input of the fired transition, e.g. user and
context, as a “log”. To make the transformed APN model simple and clear, we
adopt these “record” functions into indicator, which makes it no longer a black
token that only restricting the concurrency of the transformed APN model, but
with additional functionality which more likely to be a “runtime status cache”.

Rule 5: Define a special ADT called indicator, which consists of three fields
that are able to record actor and context, according to the relevant element
fields defined in access control policies, as well as the renamed event names ac-
cording to Rule 4.

Figure 4 shows an example definition of indicator for future transformed
APN model.

6

Figure 4: ADT definition of indicator

7

2.4 Construct Backbone Structure of APN model

After decomposition of the nested states in the original UML statechart into a
flat structure, definition of ADTs for data types of event parameters, extended
state variables, event names and indicator, we are able to build the backbone
structure of the target APN model.

Rule 6: With regard to each state, including “Start” and “End” states, in
the UML statechart, build a corresponding place in APN with the same state
name. Since these places represent the original states in UML statechart, we
name them state-places. All these state-places are assigned a multiple set of
the type indicator. Finally initialize one and only one indicator token in the
state-place corresponding to the original Start state in the UML statechart.

Rule 7: With regard to each event (state transition) in the UML statechart,
build a corresponding APN transition and related input/output arcs from/to
relevant state-places, which consume/produce an indicator token respectively.
The APN transition is named according to the format in Rule 4.

Figure 5 shows the backbone APN model structure transformed from the
UML statechart in Figure 1.

2.5 Extract Entry/Exit Actions in the States

In UML statechart, there is a special mechanism of modeling actions that deeply
coupled with states, called entry/exit actions. If transformed into APN model,
we need to extract these actions out of states.

Rule 8: With regard to entry actions of a state in the UML statechart, build a
corresponding transition sequence and insert it between the state-place and its
previous transitions with necessary intermediate places supplemented. These
supplemented places consist of a start place indicating the beginning of event
actions and several intermediate places between pairs of transition in the se-
quence. Re-direct all the input-arcs of this state-place to the start place of the
new transition sequence. All these supplemented places are assigned a multiple
set of type indicator.

Rule 9: With regard to exit actions of a state in the UML statechart, build a
corresponding transition sequence and insert it between the state-place and its
following transitions (re-direct the output-arcs of this state-place to the start
place of the new transition sequence). The creation of the transition sequence
is the same as the way in Rule 8.

8

Figure 5: Backbone structure of APN model

9

2.6 Transform Choice Pseudo State

In the UML statechart, there is a kind of special pseudo states, called choice
pseudo state. As this kind of states are used to reason conditions related to
the extended state variables, it’s more suitable for us to transform them into
transitions, not states, with relevant guards.

Rule 10: With regard to each choice pseudo state, build one transition with
relevant guard for each of its choice conditions respectively.

2.7 Supplement Transitions and Arcs

At last, we need to supplement the guard of each transitions built already and
assign proper argument on each arc.

Rule 11: Supplement each state transition: besides consuming/producing in-
dicator token in the corresponding APN transition, complete it with required
data from related place and the guard conditions. There are several important
sub rules: (a) Regarding event parameters and extended state variables, in APN
model when consumes a corresponding token from the mapped place, produces
the same token and put it back to insure the date completeness in that place.
The only difference is that if the extended state variable changes in transition
firing, make the change when producing the token back. (b) In guard condi-
tions, if there are some special operations, like “∈”, implement them in ADT
by building proper operations and axioms.

Rule 12: With regard to the output-arcs of secure transitions transformed
from the events in UML statechart, change the arguments on these output-arcs
as the generator of indicator, to produce new indicator token while recording
the information of “actor”, “context” and transition name.

Rule 13: With regard to actions in an event in the UML statechart, imple-
ment them as operations with proper axioms in related ADTs of their parame-
ter types, and then replace the arguments of the output-arcs of the transition,
transformed from this event, by the operations to produce appropriate tokens to
the places that work as memory for the original methods in the UML statechart.

Figure 6 exhibits the final complete construction of the transformed APN
model. Full definitions of ADTs can be found in the section.

10

Figure 6: Complete construction of APN model

11

3 Full Definition of ADTs in transformed APN
Model of the Example Library Management
System

Figure 7: ADT definition of user

12

Figure 8: ADT definition of reservation list

Figure 9: ADT definition of context

13

Figure 10: ADT definition of renewed event names

14

Figure 11: ADT definition of activity

15

Figure 12: ADT definition of indicator

16

4 DSLTrans Implementation

Like the adaptation from pseudo-code to a particular programing language, a
conceptual model transformation needs to be adapted to the particular opera-
tional semantics of the transformation language that actually implements that
transformation. In this section we present an adaptation of the statemachine to
Algebraic Petri Net transformation to a DSLTrans transformation.

DSLTrans is a declarative transformation language, where it is possible to
control the operationally of the transformation, by grouping the rules into layers,
where the rule application within one layer is non-deterministic, and layers are
processed in sequence.

For this, we present here, the source and target metamodels folowed by the
produced rules, organized in the order of their execution layers.

4.1 Source Metamodel

As a source metamodel, we use the specification presented in Figure 13. With
it, we define the type of Hierarchical Statecharts taken as input of our transfor-
mation.

Figure 13: Statechart metamodel

17

4.2 Target Meta-model

The target of our transformation is the Algebraic Petri Net models accepted by
the ALPINA model checker. In Figures 14, 15, 16 and 17, we present the meta
models used to define these models. Noticeably in Figure 14, we can observe
the structure of the Petri Nets, and in Figure 17, the structure of the Algebraic
Data Types.

Figure 14: Algebraic Petri Net metamodel

Figure 15: APN Environment metamodel

Figure 16: APN Multiset metamodel

18

Figure 17: Algebraic Data Types metamodel

19

4.3 Layer 01

In this layer we have only one rule that ensures, the remaining layers have a
node to aggregate the the result of the subsequent layers.

This rule (Figure 18) transforms the root element of a statemachine model
into a root of an Algebraic Petri Net model.

Figure 18: Layer 01

20

4.4 Layer 02

With this rule we produce the initializer ADT, with the particularity that the
result of this layer is serialized into a different file from the one used by the
remaining layers of the transformation.

Figure 19: Layer 02

21

4.5 Layer 03

With this layer we transform the state elements of the statemachine into Alge-
braic Petri Nets places. In the rules in Figure 20 and the first rule of Figure
21 are direct in their transformation into places. The second rule of Figure 21
does this same transformation, but includes the name of the composite state in
the naming of the places resulting from the transformation of a contained start
state.

Figure 20: Layer 03

4.6 Layer 04

After producing the places, we transform the transitions linking them to the cor-
responding places. For this linking process to take place, we take the transition
transformation rules to a new layer, allowing us to deal with all the adaptations
of the statemachine transitions, to Algebraic Petri Net transitions.

This includes the special cases when a statemachine transition starts from a
composite state (Figures 23, 26); when the transition ends in a composite state

22

(Figure 23, 24 and 25). The remaining rules deal with the simpler cases, where
rules in Figures 25, and 27, take care of the particular situation that we cannot
derive the naming directly from start states.

23

Figure 21: Layer 03

24

Figure 22: Layer 04

25

Figure 23: Layer 04

26

Figure 24: Layer 04

27

Figure 25: Layer 0428

Figure 26: Layer 04

29

Figure 27: Layer 04

30

4.7 Layer 05

In this layer we deal with the transition actions in the first rule of Figure 28.
The rules in Figure 29 deal with the node actions and transits its transformation
to the preceding transition or subsequent transition depending on whether the
actions are entry or exit actions. In the rules of Figure 30 we do the same, but
this time for when these actions are to be applied in a indirect form through the
composite states. Finally the second rule in Figure 28 transcribes the transition
guards, from the statecharts to the Algebraic Petri Net.

31

Figure 28: Layer 05

32

Figure 29: Layer 05

33

Figure 30: Layer 05

34

4.8 Layer 06

In this final layer we set the imports present in state and transitions in the
transformed model.

Figure 31: Layer 06

35

