
Electronic Communications of the EASST
Volume 34 (2010)

Proceedings of the
6th Educators’ Symposium:

Software Modeling in Education at MODELS 2010
(EduSymp 2010)

Teaching Model Driven Language Handling

Terje Gjøsæter, Andreas Prinz

10 pages

Guest Editors: Peter J. Clarke, Martina Seidl
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Teaching Model Driven Language Handling

Terje Gjøsæter1, Andreas Prinz2

1 terje.gjosater@uia.no
2 andreas.prinz@uia.no

http://www.uia.no/
Faculty of Engineering and Science

University of Agder, Grimstad, Norway

Abstract: Many universities teach computer language handling by mainly focussing
on compiler theory, although MDD (model-driven development) and meta-modelling
are increasingly important in the software industry as well as in computer science.
In this article, we share some experiences from teaching a course in computer lan-
guage handling where the focus is on MDD principles. We discuss the choice of
tools and technologies used in demonstrations and exercises, and also give a brief
glimpse of a prototype for a simple meta-model-based language handling tool that
is currently being designed and considered for future use in teaching.

Keywords: MDD, meta-modelling, language specification, teaching

1 Introduction

MDD (model-driven development) and meta-modelling is increasingly important in the software
industry as well as in computer science. However, many universities still teach language handling
with the main focus on compiler theory. For example, in the Norwegian universities, there is a
strong emphasis on compiler theory and little or no focus on meta-modelling in most of the
available computer language handling courses [GP11].

The focus among language designers is shifting towards creating small domain specific lan-
guages (DSLs) [KT08]. These languages may have a graphical or textual presentation (concrete
syntax), and they are often based on existing languages and may be preprocessed / embedded
/ transformed into other languages for execution, instead of being compiled with a traditional
compiler.

MDD may have some advantages when it comes to defining these types of languages. An im-
portant aspect of MDD is to provide the language designer with support for rapid development
and automatic prototyping of language support tools, and allow for working on a high level of
abstraction. This approach allows the language designer to focus on the language being devel-
oped, while still being able to use the definition for generating tools such as editors, validators
and code generators.

It may therefore be beneficial to modify university courses in computer language handling to
focus not only on compiler development, but also on meta-model-based language design and
definition.

The main purpose of this article, is to share experiences from teaching meta-model-based
language description, and to discuss which tools and technologies are suitable for covering the

1 / 10 Volume 34 (2010)

mailto:terje.gjosater@uia.no
mailto:andreas.prinz@uia.no
http://www.uia.no/


Teaching Model Driven Language Handling

different aspects of a language definition when teaching computer language handling.
The article is based on literature study, language specifications, and the authors’ own experi-

ences with tools, language descriptions as well as teaching of both compiler theory and meta-
modelling.

The rest of the article is organised as follows: Section 2 gives an overview of the different
aspects of a meta-model-based language specification and outlines a course teaching these prin-
ciples. Section 3 discusses issues related to choice of tools and technologies for use in teaching
the different language aspects. Finally, we summarise our findings in Section 4.

2 Teaching Meta-model-based Language Handling

2.1 Overview

When a course in compiler theory was modified to also cover meta-modelling, it became clear
that we needed to get a common understanding between the two paradigms; which parts of a
compiler description correspond to which parts of a meta-model-based language description. In
[NPT06], a language definition is said to consist of the following aspects: Structure, Constraints,
Presentation and Behaviour (see Figure 1).

Figure 1: Aspects of a computer language description

Structure defines the constructs of a language and how they are related.

Constraints bring additional constraints on the structure of the language, beyond what is feasi-
ble to express in the structure itself.

Presentation defines how instances of the language are represented. This can be the definition
of a graphical or textual concrete language syntax.

Behaviour explains the semantics of the language. This can be a transformation into another
language (denotational or translational semantics), or it defines the execution of language
instances (operational semantics). Another type of semantics is axiomatic semantics, that

Proc. EduSymp 2010 2 / 10



ECEASST

gives meaning to phrases of a language by describing the logical axioms that apply to
them.

These aspects are not always as strictly separated as they seem in the illustration; constraints
are shown as overlapping with structure, since constraints interact closely with the structure-
related technologies in building up (and restricting) the structure of the language. However,
constraints can also be used for defining restrictions for presentation as well as behaviour.

The structure is the core of the language; it contains the concepts that should be part of the
language, and the relations between them. A meta-model-based approach to language design fa-
cilitates a focus on the structure. Starting from a well-defined language structure, it is convenient
to define one or more textual and/or graphical presentations for the language, as well as to define
code generation into executable target languages such as Java.

Meta-models define the structure and constraints of a language. For a complete language def-
inition, it is also necessary to define the presentation and behaviour, and relate these definitions
to the meta-model, as explained in [Kle07].

2.2 A Computer Language Handling Course

As described in more detail in [GP11], we have investigated how a course that primarily focused
on compiler theory could be updated to include meta-model-based approaches to language defi-
nition, and a special focus on determining the optimal abstraction level for each language aspect.
Based on this, we have defined the following course outline that covers both meta-model-based
as well as compiler-based approach to language definition:

Level: MSc.
Prerequisites: Object oriented programming, UML modelling.
Credits: 5 ECTS
Literature: Aho, Lam, Sethi, Ullman: Compilers (2nd ed.)[ALSU07]; Clark, Sammut,

Willans et. al.: Applied Metamodeling (2nd ed.) [CSW08]
Form: 8 parts; each part with lectures, practical and theoretical exercises, and an

obligatory hand-in.

Part 1 - Introduction: Compilers, languages, language aspects, grammars, NFA and DFA au-
tomata, T-diagrams.

Part 2 - Structure: Models, meta-models, MDA, meta-models, abstract syntax, attribute gram-
mars.

Part 3 - Constraints: Semantic analysis, type systems, static and dynamic checks, type safety,
logical constraints.

Part 4 - Textual presentation: Syntax analysis, top-down and bottom-up parsing, lexical anal-
ysis, mapping, symbol tables, error handling, textual presentation for meta-models.

Part 5 - Graphical presentation: Graphical languages, graph grammars, graphical presenta-
tion for meta-models.

3 / 10 Volume 34 (2010)



Teaching Model Driven Language Handling

Part 6 - Transformation behaviour: Transformation, code generation, intermediate code, op-
timisation, handling of generated code, model-to-model and model-to-text transforma-
tions.

Part 7 - Execution behaviour: Semantics, interpreters, runtime environments, storage alloca-
tion, activation records, parameter passing, dynamic binding, operational semantics for
meta-model-based languages.

Part 8 - Summary: Repetition of the most important topics of the course.

The course has been implemented at the University of Agder in the spring term of 2010. In a
related project course, the students have a choice of different projects building on this course.

After running the language handling course, the following experiences were gathered:

• It is good to use a running example where aspects are added to complete a simple example
language. It is also beneficial to cover all language aspects within one platform. However,
students can easily be demotivated by immature tools.

• We should not try to cover too many different tools in the practical exercises, but rather
concentrate on the most important ones and give the students more time to try them out
for themselves by modifying and extending provided examples.

• The understanding should be strengthened by giving different perspectives on the same
issues in a lecture covering both compiler theory and meta-modelling. However, the con-
nection between the two paradigms were sometimes difficult for the students to see.

• The choice of tools and technologies for use in the course, is of big significance. We will
therefore discuss some of the available tools and technologies and their suitability for use
in teaching in Section3.

2.3 Finding the Correct Abstraction Level

An important part of this course concerns finding a good abstraction level in order to facilitate
code generation from models. In this respect, tools for language description are used as an
example. However, it is a challenge to find tools and technologies that work on a high abstraction
level for each language aspect. If the abstraction level is too low, there are too many seemingly
irrelevant details, that create complications and complexities that will make it more difficult for
the students to get started with the tools. On the other hand, if the abstraction level is too high,
it may not be possible to generate working tools from the language specification. For Structure
and Textual Presentation, there are tools that operate on a suitable level of abstraction, while it is
more difficult to find good abstractions for the other language aspects. We will cover some of the
available tools and technologies and their suitability for use in teaching in the following section.

Proc. EduSymp 2010 4 / 10



ECEASST

3 Choice of Tools and Technologies for Teaching

3.1 Overview

Immature or overly complex tools and technologies can demotivate students and in some cases
even make them avoid meta-model-based projects. A former Master student has described ex-
periences from implementing a DSL in both Eclipse with suitable plugins, and in Visual Studio
with DSL tools, and concluded that Visual Studio is good on integration, documentation and ease
of use, while Eclipse allows the developer to operate on a more suitable high level of abstraction
and has a good selection of plug-ins to extend its functionality. However, both platforms have
weaknesses when it comes to stability and user-friendliness [IGP08].

3.2 Choice of Platform

We prefer free multi-platform tools and technologies to lower cost and to enable students to
install the software on their home computers. We also wish to have a collection of tools that can
co-exist in one platform, such as for example Eclipse. We have also seen that the stability and
user-friendliness has increased for Eclipse over the last couple of years, so we have ended up
using that as our preferred platform, and testing various plug-ins to cover the different aspects of
a language specification. In the following, we will give a brief overview of our choices of tools
and technologies for each of the language aspects listed in Section 2.

3.3 Tools and Technologies for Teaching Structure

The structure of a language specifies what the instances of the language are; it identifies the
meaningful components of each language construct [Set96] and relates them to each other.

There are several ways to express structure; grammars, meta-models, database schema de-
scriptions, RDF schemata, and XML schemata are all examples of different ways to express
structure. There are different standards and recommendations for defining meta-models with
different complexity and expressiveness. The most famous dialects are MOF 1.x[OMG02],
EMF/Ecore[SBPM08], and CMOF[OMG03]. EMF/Ecore or EMOF is a simplified version of
MOF 1.x; among other simplifications, it removes associations and replaces them with pairs of
class references. It seems reasonable to start a course in meta-model-based language design with
an introduction to structure definition, using for example Eclipse with EMF/Ecore (preferably
with a graphical Ecore editor) for demonstrating relevant examples.

3.4 Tools and Technologies for Teaching Constraints

Constraints on a language can put limitations on the structure of a well-formed instance of the
language. This aspect of a language definition mostly concerns logical rules or constraints on
the structure that are difficult to express directly in the structure itself. Neither meta-models
nor grammars provide all the expressiveness that is needed to define the set of wanted language
instances. The constraints could for example be first-order logical constraints or multiplicity
constraints for elements of the structure [PST07].

5 / 10 Volume 34 (2010)



Teaching Model Driven Language Handling

In meta-modelling, the most common way to express constraints is the Object Constraint
Language, OCL, which has the expressiveness of predicate logic, in a programming-language-
like syntax. A lecture on constraints can be illustrated by creating and adding OCL constraints
to a sample meta-model, and using an OCL toolkit such as MDT OCL or the EMF Validation
Framework.

3.5 Tools and Technologies for Teaching Presentation

The presentation of a language describes the possible forms of a statement of the language. In
the case of a textual language, it describes what words are allowed to use in the language, what
words have special meaning and are reserved, and what words are possible to use for variable
names. It may also describe what sequence the elements of the language may occur in; the
syntactic features of the language. This is expressed in a grammar for textual languages.

We have two main approaches to creating tools for handling presentation of a language;

Parsers that have to support a one-way connection from the presentation to the corresponding
structure.

Editors that have to support a two-way connection between the presentation and the correspond-
ing structure, providing feedback from the syntax analysis in form of syntax highlighting,
error messages, code completion suggestions etc.

In addition to the presentation definition, an explicit or implicit mapping is needed to connect
it to the structure.

One popular framework for defining graphical notations is GMF [GMF08]. It features a lan-
guage to define graphical notations, and generates Eclipse and GEF-based [GEF08] editors from
these definitions. It allows for defining possible diagram elements and tool palettes, as well as
explicit mapping to structure.

Frameworks for textual notations can be divided into tools like XText [EFH+08], which
provides editors based on language definitions consisting of grammars, and frameworks like
TCS[JBK06], TEF [Sch08] and EMFText [HJK+09], which combine meta-models and gram-
mars. An advantage of EMFText, is that it can generate a HUTN-based (Human-Usable Textual
Notation) parser and editor from an Ecore meta-model, that can be used as a starting point for
developing a textual notation.

If a running meta-model-based example is used, it may be fruitful to show the students how an
EMF-based example structure (with constraints) can be extended with both graphical and textual
presentations, using editor generation frameworks like for example GMF for graphical editor
generation and EMFText for textual editor generation.

3.6 Tools and Technologies for Teaching Behaviour

The behaviour of a language describes what is the actual meaning of a statement of the language.
Two main types of formal ways of defining semantics are called operational and denotational

semantics [Set96]:

Proc. EduSymp 2010 6 / 10



ECEASST

Denotational semantics in the strict sense, is a mapping of a source expression to an input-
output function working on some mathematical entities. If we wish to include model
transformations and language-to-language translations in our behaviour descriptions, we
can include them in this category by applying a more broad definition of denotational
semantics; namely a transformation of each phrase of the language into a phrase in some
other language, often a mathematical formalism. To execute or interpret the behaviour of
a statement, semantics for the target language is then needed. A denotational semantics
describes an “abstract” compiler.

Operational semantics describes the execution of the language as a sequence of computational
steps. You will then need to know the semantics of the interpreter. Operational semantics
may be described by state transitions for an abstract machine. In [PST07], it is described
how semantics for SDL are handled by Abstract State Machines (ASM). With operational
semantics, a runtime environment is needed. An operational semantics describes an “ab-
stract” interpreter.

A third type of semantics, Axiomatic semantics, gives meaning to phrases of a language by
describing the logical axioms that apply to them. Experience shows that axiomatic semantics
are extremely complex and rarely used for computer languages. For this paper we only focus on
denotational and operational semantics.

We have noted that it may be challenging to teach this language aspect since most of the tools
available for supporting the theory of this aspect are relatively immature and/or hard to use,
particularly for execution behaviour.

Transformation languages like QVT [OMG05] or ATL [BDJ+03] can be used to create ex-
ample transformations on the structure of the running EMF-based example, and for the latter,
JET [JET04], Acceleo [MJL08] or XPand [EFH+08] can be used to generate textual code. The
Eclipse plugin EProvide, provides support for developing visual debuggers and interpreters based
on operational semantics defined in ASM, QVT/Relations, Java, Prolog or Scheme.

For illustrating the theory in this lecture, we may want to apply Model-to-Model transforma-
tions using QVT or ATL, and Model-to-Text with for example JET or XPand. We may also
demonstrate operational semantics with ASM-based semantics in EProvide.

3.7 An Alternative Platform

Based on experiences from teaching, we have concluded that it may be useful to develop a
very simple meta-model-based language definition platform, that attempts to remove some of
the complexity of the more popular existing tools, in order to better allow the students to grasp
the basic principles of meta-modelling. It should let the student operate on a suitable level of
abstraction on each relevant language aspect, and facilitate making and modifying small example
languages. In order to achieve this, we have started designing and prototyping a new platform
named LanguageLab. It is planned to be a complete environment for experiments with modular
language specification, particularly intended for use in teaching.

The following use cases will be supported:

• Edit/select language elements and put them together into a complete language (with tools)

7 / 10 Volume 34 (2010)



Teaching Model Driven Language Handling

• Create a language specification in a modular way.

• Based on an existing/predefined structure, the user can modify it to fit his needs, and a new
language (with tools) is created.

• Combining pre-defined modules to create a language (with tools) supporting some re-
quired features (supported/implemented by those modules)

• A language module can cover a complete, or parts of a, language aspect. Parts can be for
example: inheritance, loops, composite objects.

• A language module uses and provides interfaces for other modules that the language de-
veloper can use.

• Create a structure and connect it to a predefined execution model.

• Create an interface for a language module in order to promote it to a meta-language module
that can be used for defining other language modules.

A language will consist of one or more modules that have structured elements that can be
instantiated into a runtime model representing the language instance, via an interface. Each
module supplies create, get, and set operations for each Type element that is accessible from the
interface. If the created runtime model is intended to be used as a language module, it is possible
to create an interface from the runtime model by promoting runtime model type instances to
types via an optional operation in the module.

A simple prototype has been developed based on Eclipse/EMF. It supports some basic func-
tionality, allowing us to test it by creating a state machine runtime model from a simple state
machine language module (only the structure aspect is supported in the initial prototype), as
shown in Figure 2.

4 Conclusions

One of the main challenges of teaching meta-model-based language handling is finding tools
that are simple, on a high abstraction level, and that work well together with other tools for other
language aspects. It is our impression that some of the perceived complexity of meta-modelling
comes from complex tools and technologies, rather than from the principles behind them.

It is possible to build a series of lectures in meta-model-based computer language handling
supported by running examples based on Eclipse/EMF and other Eclipse-based plug-ins and
frameworks, to cover all aspects of a language definition.

However, we think that it may also be interesting and fruitful to develop and introduce a
very simple meta-model-based language definition platform, that attempts to remove some of
the complexity of the more popular existing tools, in order to better allow the student to grasp
the basic principles of meta-modelling. It should let the student operate on a suitable level of
abstraction on each relevant language aspect, and facilitate making and modifying small example
languages.

Proc. EduSymp 2010 8 / 10



ECEASST

Figure 2: LanguageLab prototype

Bibliography

[ALSU07] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques,
and Tools, 2nd ed. Addison-Wesley, 2007.

[BDJ+03] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, J. Rougui. First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In OOPSLA 2003
Workshop, Anaheim, California. 2003.

[CSW08] T. Clark, P. Sammut, J. Willans. Applied Metamodeling – A Foundation for Language
Driven Development. Second Edition. Ceteva, 2008.

[EFH+08] S. Efftinge, P. Friese, A. Haase, D. Hübner, C. Kadura, B. Kolb, J. Köhnlein, D. Mo-
roff, K. Thoms, M. Völter, P. Schönbach, M. Eysholdt. OpenArchitectureWare User
Guide. see also http://www.eclipse.org/gmt/oaw/doc/4.3/html/contents/index.html,
2008.

[GEF08] GEF developers. GEF documentation. see also
http://www.eclipse.org/gef/reference/documentation.php, 2008.

[GMF08] GMF developers. Eclipse Graphical Modeling Framework. 2008. See also
http://www.eclipse.org/gmf.

[GP11] T. Gjøsæter, A. Prinz. Teaching Computer Language Handling - From Compiler The-
ory to Meta-modelling. In GTTSE 2009. LNCS 6491, pp. 446–460. Springer, 2011.

9 / 10 Volume 34 (2010)



Teaching Model Driven Language Handling

[HJK+09] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende. Derivation and Refine-
ment of Textual Syntax for Models. In Model Driven Architecture - Foundations and
Applications. Lecture Notes in Computer Science 5562/2009, pp. 114–129. 2009.

[IGP08] I. F. Isfeldt, T. Gjøsæter, A. Prinz. Meta-model-based implementation of Sudoku:
Eclipse vs. Visual Studio. In Norsk informatikkonferanse : NIK 2008. Pp. 51–62.
2008.

[JBK06] F. Jouault, J. Bézivin, I. Kurtev. TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering. In GPCE’06: Proceedings of the fifth international
conference on Generative programming and Component Engineering. Pp. 249–254.
2006.

[JET04] JET developers. JET Tutorial part 1. See also http://www.eclipse.org/articles/Article-
JET/jet_tutorial1.html, 2004.

[Kle07] A Language is More than a Metamodel. 2007. Available at
http://megaplanet.org/atem2007/ATEM2007-18.pdf.

[KT08] S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling. Wiley-Interscience, 2008.

[MJL08] J. Musset, É. Juliot, S. Lacrampe. Acceleo User Guide. See also
http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf, 2.6 edition, 2008.

[NPT06] J. P. Nytun, A. Prinz, M. S. Tveit. Automatic Generation of Modelling Tools. In
Rensink and Warmer (eds.), ECMDA-FA. Lecture Notes in Computer Science 4066,
pp. 268–283. Springer, 2006.

[OMG02] OMG Editor. Meta Object Facility (MOF) Specification. Technical report, Object
Management Group, 2002.

[OMG03] OMG Editor. Revised Submission to OMG RFP ad/2003-04-07: Meta Object Facility
(MOF) 2.0 Core Proposal. Technical report, Object Management Group, April 2003.

[OMG05] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
Final Adopted Specification ptc/05-11-01. OMG document, Object Management
Group, 2005.

[PST07] A. Prinz, M. Scheidgen, M. S. Tveit. A Model-based Standard for SDL. In SDL 2007:
Design for Dependable Systems. Lecture Notes in Computer Science 4745, pp. 1–18.
Springer Berlin / Heidelberg, 2007.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework. Eclipse Series. Addison-Wesley Professional, second edition, 2008.

[Sch08] M. Scheidgen. Textual Editing Framework. see also http://www2.informatik.hu-
berlin.de/sam/meta-tools/tef/documentation.html, 2008.

[Set96] R. Sethi. Programming Languages Concepts and Constructs. Addison-Wesley, 1996.

Proc. EduSymp 2010 10 / 10


	Introduction
	Teaching Meta-model-based Language Handling
	Overview
	A Computer Language Handling Course
	Finding the Correct Abstraction Level

	Choice of Tools and Technologies for Teaching
	Overview
	Choice of Platform
	Tools and Technologies for Teaching Structure
	Tools and Technologies for Teaching Constraints
	Tools and Technologies for Teaching Presentation
	Tools and Technologies for Teaching Behaviour
	An Alternative Platform

	Conclusions

