
UML MODEL REFACTORING

USING GRAPH TRANSFORMATION

by

Alessandro Folli

Supervisor: Tom Mens

THESIS SUBMITTED AS PART

OF THE ERASMUS PROGRAM

AT

UNIVERSITÉ DE MONS-HAINAUT

BELGIUM

JUNE 2007

Contents

1 Introduction 1

2 Unified Modeling Language 4

2.1 Unified Modeling Language . 4

2.2 Class diagrams . 6

2.3 State Machine diagrams . 6

3 UML Model Refactoring 8

3.1 Model Transformation . 8

3.2 Model Refactoring . 10

3.3 Refactoring Examples . 12

3.3.1 Pull Up Operation and Push Down Operation 12

3.3.2 Extract Class . 13

3.3.3 Introduce/Remove Pseudostates . 14

4 Graph Transformations 16

4.1 Graph Theory . 16

4.2 Specifying model refactorings as graph transformations 19

4.3 The AGG graph transformation tool . 19

4.3.1 Attributed graphs . 20

4.3.2 Graph Rules . 20

4.4 UML Type Graph . 21

5 Model Refactoring Formalisation 24

5.1 List of Model refactorings . 24

5.2 Refactoring template . 26

5.3 Type Graph extensions . 27

5.4 Push Down Operation . 29

5.4.1 Scope . 29

5.4.2 Description . 29

5.4.3 Motivation and Applicability . 29

5.4.4 Example . 30

5.4.5 Refactoring Implementation . 30

5.4.6 Graph Transformation Rules . 31

5.4.7 Consequences . 35

5.5 Pull Up Operation . 36

5.5.1 Scope . 36

5.5.2 Description . 36

5.5.3 Motivation and Applicability . 36

5.5.4 Example . 37

5.5.5 Refactoring Implementation . 38

5.5.6 Graph Transformation Rules . 39

5.5.7 Consequences . 42

5.6 Extract Class . 43

5.6.1 Scope . 43

5.6.2 Description . 43

5.6.3 Motivation and Applicability . 43

5.6.4 Example . 43

5.6.5 Refactoring Implementation . 45

5.6.6 Graph Transformation Rules . 47

5.6.7 Consequences . 51

5.7 Generate Subclass . 52

5.7.1 Scope . 52

5.7.2 Description . 52

5.7.3 Motivation and Applicability . 52

5.7.4 Example . 53

5.7.5 Refactoring Implementation . 54

5.7.6 Graph Transformation Rules . 54

5.7.7 Consequences . 58

5.8 Introduce Initial Pseudostate . 59

5.8.1 Scope . 59

5.8.2 Description . 59

5.8.3 Motivation and Applicability . 59

5.8.4 Example . 59

5.8.5 Refactoring Implementation . 61

5.8.6 Graph Transformation Rules . 62

5.8.7 Consequences . 63

5.9 Introduce Region . 64

5.9.1 Scope . 64

5.9.2 Description . 64

5.9.3 Motivation and Applicability . 64

5.9.4 Example . 65

5.9.5 Refactoring Implementation . 66

5.9.6 Graph Transformation Rules . 67

5.9.7 Consequences . 69

5.10 Remove Region . 70

5.10.1 Scope . 70

5.10.2 Description . 70

5.10.3 Motivation and Applicability . 70

5.10.4 Example . 71

5.10.5 Refactoring Implementation . 71

5.10.6 Graph Transformation Rules . 72

5.10.7 Consequences . 74

5.11 Flatten States Transitions . 75

5.11.1 Scope . 75

5.11.2 Description . 75

5.11.3 Motivation and Applicability . 75

5.11.4 Example . 76

5.11.5 Refactoring Implementation . 77

5.11.6 Graph Transformation Rules . 80

5.11.7 Alternative implementations . 85

5.11.8 Flatten States Incoming Transitions 89

5.11.9 Consequences . 92

6 Model Refactoring Tool 93

6.1 Implementation . 93

6.2 Control Structures . 95

6.2.1 Graph–based control structure . 95

6.2.2 AGG Rule Sequence . 98

6.3 Validation . 100

6.3.1 Pull Up Operation and Push Down Operation 101

6.3.2 Introduce Initial Pseudostate . 102

6.3.3 Flatten States Transitions . 105

6.3.4 Remove Region . 105

6.3.5 Introduce Region . 105

6.4 Limitations and known issues . 109

6.4.1 Limitations . 109

6.4.2 Known issues of the prototype . 111

7 MOFLON 113

7.1 The MOFLON tool . 113

7.2 Metamodel . 114

7.3 Primitive transformations . 117

7.4 Composite transformations . 119

7.4.1 Introduce Initial Pseudostate . 121

7.4.2 Flatten States Outgoing Transitions 122

7.5 Conclusion . 125

8 UML Model Consistency 126

8.1 Model Consistency . 126

8.2 Consistency constraints . 127

8.3 Model Synchronization . 131

8.3.1 Delete transition . 131

8.3.2 Move the association to operations . 133

8.3.3 Wrap operation . 137

9 Conclusions 138

Chapter 1

Introduction

Model–driven engineering (MDE) is a software engineering approach that promotes the use of

models and transformations as primary artifacts. Its goal is to tackle the complexity of develop-

ing, maintaining and evolving complex software systems by raising the level of abstraction from

source code to models. The mechanism of Model transformation is at the heart of this approach,

and it represents the ability to transform and manipulate models. [1]

The transformations between models provide a chain that enables the evolution and the au-

tomated generation of an executable system from its corresponding models. Model transforma-

tion definition, implementation and execution are critical aspects of this process. Furthermore,

model transformations are also models, and therefore an integral part of this model–based ap-

proach. Model transformations need specialised support in several aspects in order to realize

their full potential for software architects, software developers and tool vendors. The problem

goes beyond having languages to represent model transformations because the transformations

also need to be reused and they need to be integrated into software development methodologies

and development environments that make full use of them.

The term refactoring was originally introduced by Opdyke in his seminal PhD dissertation

[2] in the context of object–oriented programming. Martin Flower [3] defines this activity as

“the process of changing a software system in such a way that it does not alter the external be-

haviour of the code, yet improves its internal structure”. This research will focus on the problem

of Model Refactoring, which aims to apply refactoring techniques at model level. Model Refac-

toring is a particular kind of model transformation and may also be called Behaviour–Preserving

Model Transformation.

1

2

The Unified Modeling Language (UML) [4, 5] can be used to specify, visualize, and docu-

ment models of software systems, including their structure and design. Since the UML is the

generally accepted object–oriented modeling language, it ought to play an essential role in MDE.

A software design is typically modeled as a collection of different UML diagrams. Because dif-

ferent aspects of the software system are covered by different types of UML diagrams, there is

an inherent risk that the overall specification of the system is inconsistent. Also model transfor-

mations, such as (arbitrary) model evolutions, can transform a model into an inconsistent state.

Inconsistency management has been defined in Finkelstein et al. [6] as “the process by which

inconsistencies between software models are handled so as to support the goals of the stake-

holders concerned”. It is a complex process that includes activities for detecting, diagnosing,

and handling the inconsistencies. These activities are extended by Spanoudakis and Zisman [7]

to include detection of overlaps, detection of inconsistencies, diagnosis of inconsistencies, han-

dling of inconsistencies, tracking, specification and application of an inconsistency management

policy.

Current–day UML CASE modeling environments provide poor support for evolving and

managing inconsistencies between UML models. In particular, little research has been done

taking into account a wide range of inconsistencies over different kinds of UML diagrams. In-

consistency management in the UML context is quite complicated due to several reasons. The

most obvious reasons are the lack of formal semantics for the UML and that the UML is a gen-

eral purpose language that can be applied to several application domains and in several software

development processes. [8]

Therefore, the goal of this dissertation will be to formally explore the refactoring of UML

models and the related process of consistency maintenance in order to ensure that the refactoring

will not make the UML model inconsistent.

In this dissertation, we will use graphs to represent UML models and graph transformations

to specify and apply model transformations. This choice is motivated by the following reasons:

• Graphs are a natural representation of models that are intrinsically graph–based in nature

(e.g., class diagrams, state machine diagrams, activity diagrams, sequence diagrams).

• Graph transformation theory provides a formal foundation for the analysis and the auto-

matic and interactive application of model transformations.

3

In this dissertation, we will propose an initial catalog of model refactorings for different

kinds of UML diagrams (e.g., class diagrams, state machine diagrams); each model refactoring

will be formalised, explained and motivated using a concrete example. The AGG general–

purpose graph transformation tool supplies a suitable instrument to formally define and verify

them.

We will also use the graph transformation formalism to check that the consistency between

different diagrams is preserved when the model refactorings are applied. Inconsistency detec-

tions and their resolutions can be expressed as graph transformation rules, in this way they will

integrate the rules defined to formalise the model refactorings specified earlier.

To summarize, the main contributions of this dissertation will be:

• An initial catalog of model refactorings for UML models with a detailed description of

the characteristics, the applicability and the problems that must be addressed.

• A study of the use of graph transformations for specification of model refactoring. In

particular, to assess the feasibility using a specific graph transformation tool – AGG –

and to provide recommendations about AGG may be improved to better support model

refactoring.

• A guideline for future work to be carried out in the domain of model refactoring.

• A study of the relation between model refactoring and model consistency in presence of

UML models composed of different kinds of diagrams.

Chapter 2

Unified Modeling Language

2.1 Unified Modeling Language

In the field of software engineering, the Unified Modeling Language (UML) is a non–proprietary

specification language for object modeling. UML is a general–purpose modeling language that

includes a standardized graphical notation used to create an abstract model of a system, referred

to as a UML model. [9]

UML is officially defined by the Object Management Group (OMG) [4, 5] by the UML meta-

model. UML was designed to specify, visualize, construct, and document software–intensive

systems.

Distinction between the UML model and the set of diagrams of a system is important. A

diagram is a partial graphical representation of a system’s model. The model also contains a

“semantic backplane” – documentation such as written use cases that drive the model elements

and diagrams. [9]

UML allows to describe the system in three different prominent aspects, each of them us-

ing a different set of diagrams. The diagrams could possibly be related in order to add more

information to the modeled system.

• Functional Model: Shows the functionality of the system from the user’s point of view,

therefore it describes the external behaviour of the system. It includes the Use Case dia-

grams.

• Object Model: Shows the structure and substructure of the system using objects, attributes,

4

5

operations, and associations. It includes Class diagrams, Object diagrams and Deploy-

ment diagrams.

• Dynamic Model: Shows the internal behaviour of the system; it describes therefore how

the objects evolve and interact. It includes Sequence diagrams, Activity diagrams and

State Machine diagrams.

In UML 2.0, there are 13 types of diagrams [4]. To understand them, it is sometimes useful

to categorize them hierarchically, as shown in figure 2.1.

Figure 2.1: Hierarchy of UML 2.0 Diagrams

Structure Diagrams emphasize what must be in the system being modelled:

• Class diagram

• Component diagram

• Composite structure diagram

• Deployment diagram

• Object diagram

6

• Package diagram

Behaviour Diagrams emphasize what must happen in the system being modelled:

• Activity diagram

• State Machine diagram

• Use case diagram

Interaction Diagrams –a subset of behaviour diagrams– emphasize the flow of control and

data among the things in the system being modelled:

• Communication diagram

• Interaction overview diagram (UML 2.0)

• Sequence diagram

• UML Timing Diagram (UML 2.0)

This dissertation will focus on the analysis of Class diagrams and State Machine diagrams

as they are among the commonly used diagrams. However, other kinds of diagrams will be used

to formally define the results.

2.2 Class diagrams

A Class diagram is a graphical representation; it represents the structure of the system and it

should be noticed that a Class diagram is a static view of the modeled system.

The purpose of a Class diagram is to depict the classes within a model. In an object oriented

application, classes have attributes (member variables), properties (member functions) and re-

lationships with other classes. The UML class diagram can depict all these things quite easily.

Figure 2.2 shows an example of Class diagram.

2.3 State Machine diagrams

The State Machine diagrams –formerly called State Chart diagrams in UML 1.x– describe how

the instances of the class objects work. They are a specification of the dynamic behaviour of

individual class objects.

7

Figure 2.2: Class Diagram Example

State Machine diagrams depict the various states that an object may be in, and the transitions

between those states. A state represents a stage in the behaviour pattern of an object; it is possible

to have initial states and final states. An initial state –also called a creation state– is the one that

an object is in when it is first created, whereas a final state is one in which no transitions lead

out of. A transition is a progression from one state to another and will be triggered by an event

that is either internal or external to the object. Figure 2.3 shows an example of State Machine

diagram.

Figure 2.3: State Machine Diagram Example

Chapter 3

UML Model Refactoring

3.1 Model Transformation

Model refactoring represents only one specific kind of model transformation. This section will

give a general high–level overview of model transformation, and will show where model refac-

toring fits in. A detailed taxonomy of model transformations has been presented by Tom Mens

and Pieter Van Gorp [10] during the Workshop on Graph and Model Transformation from which

we will summarise some important ideas here.

In order to transform models, the latter need to be expressed by some modeling language,

the syntax of which being expressed by a metamodel [11].

A distinction can be made between endogenous and exogenous transformations, based on the

number of metamodels that are used to express the source and the target models. Endogenous

Transformations are transformations between models expressed through the same metamodel,

contrary to the Exogenous Transformations which involve models expressed through different

metamodels.

Typical examples of exogenous transformations are:

• Synthesis of a higher–level, more abstract, specification (e.g., an analysis or design model)

into a lower–level, more concrete one (e.g, a model of a Java program). A typical example

of synthesis is code generation, where the source code is translated into bytecode (that

runs on a virtual machine) or executable code, or where the design models are translated

into source code.

8

9

• Reverse engineering is the inverse of synthesis, and extracts a higher–level specification

from a lower–level one.

• Translation is the translation of a model from one language to another, all the while keep-

ing the same level of abstraction. For example from the UML to the XMI representation

of a model, or from the Class diagram to the E–R diagram representation of a database

model.

Typical examples of endogenous transformation are:

• Optimization, a transformation aimed to improve certain operational qualities (e.g., per-

formance), while preserving the semantics of the software.

• Refactoring, a change to the internal structure of software to improve certain structural

qualities (such as understandability, modifiability, reusability, modularity, adaptability)

without changing its observable behaviour [3].

• Simplification and normalization, used to decrease the syntactic complexity. For example,

the Simplification could be used to remove redundancy and obsolete code. The normal-

ization is often used in the database modeling process.

• Component adaptation, to modify and adapt the code of existing software components,

either statically or dynamically (i.e., during component execution), to the user needs.

In the same way, one more distinction can be made between horizontal and vertical transfor-

mations based on the abstraction level which the source and target models reside on. Horizontal

Transformation are those where the source and the target models belong to the same abstraction

level; on the contrary the Vertical Transformations involve models at different abstraction levels.

Table 3.1 illustrates that the dimensions “horizontal” versus “vertical” and “endogenous”

versus “exogenous” are truly orthogonal, by giving a concrete example of all possible combina-

tions [10].

Others distinctions can be made based on the characteristics of the transformations, however

this is outside the scope of this paper.

10

Horizontal Vertical

Endogenous Refactoring Formal refinement

Optimization

Exogenous Language migration Code generation

Translation Reverse engineering

Table 3.1: Orthogonal dimensions of model transformations with examples.

3.2 Model Refactoring

Model refactoring –as shown in the previous section– is a special kind of endogenous, horizontal

model transformation which aims to evolve and improve the structure of the model, all the while

preserving (certain aspects of) its behaviour. Like the process of source code refactoring [12],

the process of model refactoring consists of distinct activities:

1. Identify of where the model should be refactored.

2. Determine which model refactoring(s) should be applied to the places identified.

3. Apply the model refactoring(s).

4. Guarantee that the model refactoring applied preserves its behaviour.

5. Assess the effect of the refactoring on quality characteristics of the model (such as com-

plexity, understandability, maintainability).

6. Maintain consistency between the model refactored and other software artifacts (such as

related models, program code, etc.).

A definition of refactoring has been introduced by Don Bradley Roberts in his PhD disser-

tation [13]. He defines refactorings as program transformations containing particular precondi-

tions that must be verified before the transformation can be applied.

The following definition of model refactoring is adapted from Roberts’ refactoring definition

[13, 14]:

Definition 3.2.1. A Model refactoring is a pair R = (pre, T) where pre is the set of precondi-

tions that the model must satisfy, and T is the model transformation.

11

By using this, when we formally define the model refactoring we will express all the pre-

conditions that must be satisfied before the transformation can be performed, and in chapter 4

we will show how these preconditions may be expressed as part of graph transformations.

In formally defining model refactoring, it is also necessary to ensure three prominent aspects:

• that the transformation does not lead to an ill–formed (i.e. syntactically incorrect) model.

In principle, this requirement will be guaranteed in AGG by defining a Type Graph and

typed graph transformations.

• that the transformation does not lead to an inconsistent model. Even if the syntax is cor-

rect, the model could be inconsistent. The same is true, by the way, for any programming

language.

• that the transformation preserves the model behaviour.

A model refactoring is not supposed to change the behaviour specified by the models in

question. However, even if the preservation of model behaviour is crucial to model refactoring,

it is very difficult to be achieved. Model refactoring is a rather recent research issue and such

definitions of behaviour preservation properties have not yet been completely given. There are

some proposals about behaviour preservation but, in the context of the UML, such definitions

do not exist because there is no consensus on a formal definition of behaviour.

Also for source code refactorings, definitions of behaviour preservation are rarely provided.

Opdyke [2] suggests the following definition of behaviour preservation: “for the same set of

input values, the resulting set of output values should be the same before and after the refactor-

ing”. To ensure this kind of behaviour preservation, refactoring preconditions and postconditions

need to be specified [13]. However, as explained by [12], this kind of behaviour preservation

is sometimes insufficient since many other aspects of the behaviour may be relevant as well.

This implies the need for a wide range of definitions of behaviour preservation depending on

domain–specific, user–specific, or company–specific concerns.

Behaviour preservation can also be dealt with in a more pragmatic way. A first approach

is by means of rigorous testing. Another pragmatic approach is to specify a weaker notion

of behaviour preservation that is not sufficient enough to guarantee the full program seman-

tics preservation, but focuses on specific issues. For example, we may adopt a notion of call

12

preservation, which guarantees that all method calls are preserved by the refactoring [15].

In this dissertation we will focus more on the problem of inconsistency management as

a complete definition of behaviour preservation does not yet exist. In other words, we will

consider a model refactoring to be correct if it does not lead to an inconsistent model.

3.3 Refactoring Examples

To better understand what model refactorings are and how a transformation could lead to an in-

consistent model, we will show some detailed examples. A running example is used throughout

the dissertation to explain and illustrate the main concepts.

3.3.1 Pull Up Operation and Push Down Operation

The Push Down Operation refactoring is applied on UML Class diagrams and it copies an op-

eration from a superclass to its subclasses, deleting the original. In the example shown in figure

3.1, the snapshot operation has been removed from the Viewer class and has been added to the

subclasses PhotoPlayer and MoviePlayer.

Figure 3.1: Push Down Operation Refactoring

The Pull Up Operation refactoring, shown in figure 3.2, is the counterpart of the Push Down

Operation refactoring; it copies an operation from the subclasses to a superclass, deleting the

original. In the example shown in figure 3.2, the snapshot operation has been removed from the

subclasses PhotoPlayer and MoviePlayer and has been added the superclass Viewer.

13

Figure 3.2: Pull Up Operation Refactoring

3.3.2 Extract Class

The Extract Class refactoring is applied on UML Class diagrams and, as suggested by the name,

it extracts a class from an existing one exporting a set of operations and attributes. The refactor-

ing creates a new class containing the operations and attributes specified and connects it through

a new association to the source class from where it was extracted.

Figure 3.3: Exctract Class Refactoring

In the running example, shown in figure 3.3, the class Counter has been extracted from

the class Player, the operations increaseCounter and decreaseCounter being moved to the new

class. The type of the original attribute counter of the class Player has been changed and, after

the refactoring, it corresponds to the newly created class.

The Extract Subclass refactoring, similar to the Extract Class refactoring, creates a new class

as well, but inserts it between the source class and its direct subclasses.

Figure 3.4 shows an example of model inconsistency generated by this kind of refactoring,

14

Figure 3.4: Model Inconsistencies

even if the Class diagram modified by the refactoring is well–formed and correct.

The State Machine diagram of the running example, shown in figure 3.4, describes the

behaviour of the class Player. The diagram refers to the operations increaseCounter and de-

creaseCounter contained by the class Player. After the refactoring, these operations are not

contained by the class anymore and the State Machine diagram is incorrect, the refactoring hav-

ing generated a model inconsistency.

Obviously this kind of inconsistency could be generated only by working with different

kinds of UML diagrams.

3.3.3 Introduce/Remove Pseudostates

The Introduce/Remove Pseudostates refactoring is applied on UML State Machine diagrams

and, as suggested by the name, it is used to introduce and remove some kinds of pseudostates

(i.e. Initial pseudostate).

Figure 3.5 shows a simple example of the Introduce Initial Pseudostate refactoring. An

initial pseudostate has been added to the ACTIVE region and the target of the transition –that

initially refers to the Ready state– has been changed to become the region itself. An automatic

transition has been defined between the initial pseudostate and the Ready state.

The Ready state will become the default initial state of the ACTIVE region; a transition

whose target is the ACTIVE state will lead the State Machine to the Ready state.

15

(a) Without Initial Pseudostate

(b) With Initial Pseudostate

Figure 3.5: Introduce/Remove Initial Pseudostate Refactoring

Chapter 4

Graph Transformations

In this chapter, we will introduce the necessary concepts about graph transformations for the

purpose of Model Refactoring, and we will present the AGG graph transformation tool used to

implement and test model refactorings.

4.1 Graph Theory

Within the last decade, graph transformation has been used as a modeling technique in software

engineering and as a meta–language to specify and implement visual modeling techniques like

the UML. Different concepts of graph transformation exist and we will focus on the use of Graph

Grammars in this dissertation.

The graph grammar theory [16, 17] applies formal language theory to the specification of

graphs. A formal language for a textual language specifies a grammar for the language, the

grammar consisting of a series of rules or productions that specify how valid sentences in the

language are constructed. The same way, a graph–grammar consists of a set of productions that

can be used to construct valid sentences in a graph.

We can extract a formal definition of graph from the book ‘‘Fundamentals of Algebraic

Graph Transformation”: [18].

Definition 4.1.1. Labelled graph.

A labelled graph G consists of a set V of nodes (also called vertices) and a set of edges E, two

functions s, t : E → V to associate to each edge a source and target vertex, and the functions

lv : V → L and le : E → L to associate a label to every vertex and edge.

16

17

The figure 4.1 shows a simple example of graph.

Figure 4.1: Example of graph

Definition 4.1.2. Graph morphism.

Let G and H be two graphs. A graph morphism m : G → H consists of a pair of partial

functions mV : VG → VH and mE : EG → EH that preserve sources and targets of edges, i.e.,

sH ◦mE = mV ◦ sG and tH ◦mE = mV ◦ tG. It also preserves vertex labels and edge labels,

i.e., lH ◦mV = lG and lH ◦mE = lG.

A graph morphism m : G → H is injective (surjective) if both mV and mE are injective

(surjective). It is isomorphic if m is injective and surjective. In that case, we write G ∼= H .

Note that the functions mV and mE are partial to allow for vertex deletions and edge dele-

tions. All vertices in VG\dom(mV) and all edges in EG\dom(mE) are considered to be deleted

by m.

A match m of graph G1 to graph G2 is a total graph morphism that maps the vertices and

edges of G1 to G2 such that the graphical structure and the labels are preserved.

To determine if a graph is well–formed, it is necessary to check whether it conforms to a

so–called Type Graph. The formal definition of typed graphs is taken from [19].

Definition 4.1.3. Typed graph.

Let TG be a graph (called the type graph). A typed graph (over TG) is a pair (G, t) such that G

is a graph and t : G → TG is a graph morphism. A typed graph morphism (G, tG) → (H, tH)

is a graph morphism m : G → H that also preserves typing, i.e., tH ◦m = tG.

Attributed graphs are graphs where each vertex or edge can contain zero or more attributes

used to to attach additional information to them. Such an attribute is typically a name–value pair,

18

that allows the specification of a value for each attribute name. These values can be very simple

(e.g., a number or a string) or more complex (e.g., a Java expression). The notion of typed graph

can be extended for the attributed graphs.

Definition 4.1.4. Graph production (rule).

Let Pl and Pr be labelled graphs. A graph production is a graph morphism P : Pl → Pr.

A graph transformation is the result of application of a graph production. A production rule

P is a partial morphism between a left–hand side Pl and a right–hand side Pr, which provides

information about which elements are preserved, deleted and created in case of an application

of the production. A production is applicable to a graph G, if there is a match of Pl to G.

Definition 4.1.5. Graph transformation.

A graph transformation G ⇒t H is a pair t = (P,m) consisting of a graph production P :

Pl → Pr and an injective graph morphism (called match) m : Pl → G.

The mechanism of graph transformation may also be extended with the notion of application

conditions.

Definition 4.1.6. Negative application condition.

Let P : Pl → Pr be a graph production. A negative application condition for P is a graph

morphism nac : Pl → P̂l. A graph transformation G ⇒(P,m) H satisfies a negative application

condition nac if no graph morphism m̂ : P̂l → G exists such that m̂ ◦ nac = m.

Needless to say, the introduction of this notion of application conditions makes graph trans-

formation considerably more expressive.

Two different approaches are available to deal with a system containing a large number of

graph productions: programmed graph transformation and graph grammars.

The programmed graph transformation approach is implemented by tools such as Fujaba

[20] and it is possible to specify a control structure that controls the order in which graph pro-

ductions can be applied.

Graph grammars do not impose any control structure and all available graph productions

are applied non–deterministically or at random. As such, a given initial graph G can give rise

to a whole range of possible result graphs, which is referred to as L(G), the language gener-

ated by the graph grammar. Each word in this language corresponds to a possible sequence of

graph transformations that can be applied to G. Graph grammars are used in the AGG graph

transformation tool. [21]

19

4.2 Specifying model refactorings as graph transformations

According to Bézivin and many others [21], a model can be represented using a graph–based

structure. Figure 4.2 intuitively shows the correspondence between models and their graph

representation. The graph transformation theory offers many theoretical results that can help

during analysis of model refactorings.

Figure 4.2: Relationship between models and their graph representation.

According to the results of many studies [21, 22], graph transformations are a suitable tech-

nology to deal with model transformation. Table 4.1 shows the result of a comparison between

graph transformation and model refactoring.

Graph transformation Refactoring

type graph and global graph constraints well–formedness constraints

negative application conditions refactoring preconditions

parameterised graph productions with NACs refactoring transformation

programmed graph transformations composite refactorings

Table 4.1: Comparison of graph transformation and refactoring concepts.

To emphasize the results mentioned in Table 4.1, we will start by introducing AGG, a

general–purpose graph transformation tool.

4.3 The AGG graph transformation tool

AGG [23, 24] is a rule–based visual programming environment supporting an algebraic single–

pushout approach [25] to graph transformation. It aims at the specification and prototypical

implementation of applications with complex graph–structured data. AGG may be used as a

20

general purpose graph transformation engine in high–level JAVA applications employing graph

transformation methods.

AGG program consists of a graph grammar attributed by Java objects which may come from

user–defined Java classes, and it supports the specification of type graphs with multiplicities and

attributes.

Graph grammars consist of one graph –the start graph initializing the system– and a set of

rules describing the actions which can be performed. The start graph may also be attributed

by Java objects and expressions. Moreover, rules may be equipped by negative application

conditions. The way graph rules are applied, directly realises the single–pushout approach to

graph transformation presented in [25] .

A graph consists of two disjoint sets containing the nodes and the arcs of the graph, they

acting like ordinary Java variables to which a value can be assigned. As a whole, the nodes and

arcs are called the objects of the graph. The attribution of nodes and arcs by Java objects and

expressions follows the ideas of attributed graph grammars as stated in [26].

4.3.1 Attributed graphs

AGG graphs are directed, and their nodes and arcs may be typed and attributed. A type can be

composed from a string and the visual layout. It is possible that the string is empty and the type

is determined only by the layout, i.e. different layouts mean different types.

The attributes are specified by a type, a name and a value. Each graph node and arc may

have several attributes. All graph objects (nodes and arcs) of one type also share their attribute

declaration, i.e. the list of attribute types and names.

The attributes may be typed by any valid Java type. This means that it is not only possible

to annotate graph objects by simple types like strings or numbers, but it is also possible to use

arbitrary custom classes to gain maximal flexibility in attribution.

4.3.2 Graph Rules

Graph rules are used to describe graph transformation. They consist of a left and a right–hand

side L and R and, moreover, a set of negative application conditions. The graphs occurring in a

rule are typed and attributed, as mentioned above. However, it depends on the rule side which

kinds of attributes are allowed. Left–hand sides do not only contain concrete Java objects, but

21

are also allowed to have variables. They are used to abstract the operation from concrete attribute

values.

Moreover, the right-hand side may contain more complex Java expressions to express com-

putations on the attributes. If an attribute is used only to check some value without changing it,

it only has to occur on the left-hand side of a rule. If an attribute value is changed independently

of the value it had before, it only has to occur on the right–hand side.

The left and the right–hand side of a rule are related by a partial graph morphism L ⇒
R. Those graph parts related by this morphism are preserved by the rule; all the other graph

objects in the left–hand side are deleted; all others in the right–hand side are newly created. To

indicate which objects are mapped to one another in the graphs, the AGG tool use numerical

tags preceding an object’s type name, separated by a colon.

Figure 4.3: Graph Rule with NAC

Figure 4.3 shows an example of graph rule for which a negative application condition has

been defined.

4.4 UML Type Graph

UML models can be represented as a graph–based structure, and graphs must conform to the

corresponding Type Graph, as well the models must conform to their Metamodel.

The Unified Modeling Language is officially defined by the UML metamodel [4, 5] as men-

tioned above. A Type Graph corresponding to the UML metamodel is required to formally

represent the UML models as graphs and to formally define the UML Model Refactoring.

22

For the purpose of this dissertation, we have chosen to take into account a subset of the

concepts defined by the UML metamodel, in particular we have focused on the implementation

of UML Class diagrams and UML State Machine diagrams.

Figure 4.4 shows the Type Graph corresponding to the part of interest of the UML meta-

model, implemented using the AGG graph transformation tool.

AGG offers many concepts that are useful to define a type graph very close to the UML

metamodel. AGG allows enrichment of the type graph with an inheritance relation between

nodes, and each node type can have one or more direct ancestor (parent) from which it inherits

the attributes and edges. Moreover, it is also possible to define a node type as an abstract type;

it is not possible to create an instance node of an abstract type.

However, using AGG it is more complicated to represent concepts like Aggregation and

Composition used by the UML metamodel. In some cases the Type Graph has been simplified

considering the more generic concept of association. Moreover, AGG does not have any notion

of Enumeration type. The property kind of the Pseudostate element has been represented using

a String value.

Looking at the UML metamodel [4, 5] we have encountered some poorly–defined concepts,

and decisions were required to ensure a correct definition of model refactorings. For example,

the UML specification [4, 5] affirms that all transitions are owned by regions but the specification

is not clear about which transitions can be owned by which regions. The chosen rule for this

dissertation is that a transition between two states is owned by the “closest” region that contains

both states. States and regions constitute a containment hierarchy, then the closest region would

be the least common ancestor (LCA) of the source and target states of the transition in that

hierarchy.

On the other hand, it is also possible to assume that all transitions are owned by the top–

most region, considering valid the concepts defined in previous versions of UML [27]: “All

Transitions which are essentially relationships between States, except internal transitions, are

owned by the StateMachine”.

That decision could generate incompatibilities among tools that use a different approach.

Anyway, it is always possible to apply some transformations in order to adapt the graph to the

solution chosen.

23

Figure 4.4: UML 2.0 Type Graph

Chapter 5

Model Refactoring Formalisation

This chapter will supply a detailed description of each model refactoring, the characteristics

and the applicability, by showing also some concrete examples. An explanation of the general

refactoring behaviour precedes the description of each single transformation step that in case are

implemented using the AGG general–purpose graph transformation tool.

5.1 List of Model refactorings

The standard catalogue for source code refactorings can be found in [3]. This catalogue de-

scribes in detail seventy–two refactorings for the restructuring of object–oriented constructs.

With respect to the research of model refactoring at a higher abstract level, Sunyé et al. [28]

proposed an initial set of refactorings for UML Class diagrams and State Machine diagrams.

Their research provided a fundamental paradigm for model refactoring to improve the design

of object-oriented applications; nevertheless, they do not have any concrete implementation of

representative tools.

This chapter describes the list of the chosen model refactorings used in our dissertation. The

representative list will constitute an initial catalog of model refactorings for UML models.

Implemented refactorings for UML Class diagrams:

• Pull Up Operation: The Pull Up Operation refactoring pulls an operation out of one or

maybe several subclasses up into the super class. This prevents possible duplicated code

if a super class has multiple subclasses.

24

25

• Push Down Operation: The Push Down Operation refactoring removes an operation

from the super class and pastes it into all its subclasses. It is useful when every sub-

class needs the operation to behave in its own way and it is not possible to generalize the

behaviour in the super class.

• Extract Class: The Extract Class refactoring splits one class into two separate classes.

This is necessary if the functionality provided by one class would have a better logical

structure when it was split into two.

• Generate Subclass: The Generate Subclass refactoring creates a subclass and it copies

the operations of the superclass.

Implemented refactorings for UML State Machine diagrams:

• Introduce Initial Pseudostate: The Introduce Initial Pseudostate refactoring adds an

initial pseudostate to a composite state, or region.

• Introduce Region: The Introduce Region refactoring introduces a region in a State Ma-

chine diagram moving to it a set of selected states.

• Remove Region: The Remove Region refactoring removes a region from a State Machine

diagram by moving states and transitions contained by the region to the parent region.

• Flatten State Transitions: The Flatten States Transitions refactoring replaces an incom-

ing/outgoing transition, connected to a composite state, with the corresponding transitions

associated to each sub–states.

The above representative list is inevitable incomplete but gives a clear idea about the diver-

sity of the available model refactorings. Those model refactorings have been chosen in order to

show a sufficient variety of graph transformation rules dealing with all the entity types defined

in the Type Graph.

Some model refactorings that have not been implemented, present characteristics very simi-

lar to the chosen refactorings. For example the Pull Up Property refactoring, that pulls a property

out of one subclass up into the super class, is functionally equivalent to the Pull Up Operation

refactoring.

26

The Move Operation refactoring that moves an operation from one class to another and the

Remove Operation refactoring that removes an operation from a class, are obviously part of the

Extract Class refactoring.

The Rename Operation refactoring –as its name lets assume– renames a chosen operation

and, at the source code level, this includes the change of the calls to that operation. This kind

of refactoring does not have significant impacts over the chosen graph representation of UML

models and could be accomplished using one simple graph transformation rule.

5.2 Refactoring template

In this dissertation, for model refactoring an attempt has been made to find and write down uni-

versal descriptions and instructions, which possibly would become an initial model refactoring

catalogue.

Each model refactoring has been described with an explanation of when it should be used,

how it can be realized, and with a discussion of the list of mechanisms to accomplish the refac-

toring itself.

The same structure has been adopted and utilized along the dissertation to document each

model refactoring. The following describe the purpose of each section:

Scope. This section specifies which type of UML models are affected by the model refac-

toring. In some cases, the scope of the refactoring has been limited in order to avoid that the

transformation leads to an inconsistent model.

Description. It identifies in which case the model refactoring should be applied and gives a

general overview of the characteristics, the features, and the behaviour of the model refactoring.

Motivation and Applicability. It gives a detailed explanation of the benefits of the model

refactoring and specifies under which conditions the model refactoring can be applied. All these

conditions will be formalised in subsequent sections.

Example. The descriptions are illustrated and motivated using a running example, it will

serve to demonstrate the applicability of the model refactoring. Of course, such examples can

only show certain aspects of the usability of model refactorings, they can not demonstrate their

complete functionality and the variety and flexibility of possible applications.

27

Refactoring Implementation. This section explains the general behaviour of the model

refactoring and its implementation. The notation of UML Interaction Overview diagrams has

been used to formally define the control flow of each model refactoring and to specify in which

order the graph transformation rules implemented in AGG must be applied.

Graph Transformation Rules. It gives a detailed description of each single transformation

step that are implemented in the case using the AGG general–purpose graph transformation tool.

Consequences. The last section resumes the impacts of the model refactoring. Moreover, it

reports some considerations and possible improvements.

5.3 Type Graph extensions

We have extended the Type Graph described in chapter 4.4 in order to better support the model

refactorings. Figure 5.1 shows a simplified version of the Type Graph, yellow nodes and edges

representing the refactoring entities that have been added for that purpose.

Figure 5.1: Type Graph - Refactoring Entities

The “Refactoring” node and the “rType” edge specify which type of the refactoring takes

place as well as the role of the associated node. The “refactoringTo” edge is used to maintain a

28

relationship between different nodes during the execution of different refactoring steps.

An example of their utilization can be seen in figure 5.23: the “Refactoring” node states that

an Extract Class refactoring is going to be applied to the existing class and the “refactoringTo”

edge specifies which is the extracted class. The refactoring entities are necessary in order to

easily match the interested nodes during the subsequent steps of the model refactoring.

The refactoring entities will be removed when the process is completed, the same happens

in case of failure.

29

5.4 Push Down Operation

5.4.1 Scope

The Push Down Operation refactoring produces changes on a Class diagram only. Other di-

agrams are not affected by the transformations, but it is necessary to check that the operation

involved in the refactoring is not used by other diagrams.

If the operation involved in the refactoring is used by other diagrams –for example by a State

Machine diagram– application of some other complex transformations is necessary to ensure the

models being consistent after the refactoring.

5.4.2 Description

The Push Down Operation refactoring removes an operation from the super class and pastes it

into its subclasses. The refactoring does not give the user the choice whether the operation will

be pushed down into all or only a subselection of the subclasses. Another possible solution is to

copy the operation only into the subclasses that make use of it.

5.4.3 Motivation and Applicability

This kind of refactoring moves an operation into the subclasses that do not define the operation.

This makes sense if every subclass needs the operation to behave in its own way, and the be-

haviour cannot be generalised in the super class. It is also useful when an operation in a super

class is logically better placed as in its deriving classes.

The involved operation must not be referred by any State Machine diagrams otherwise the

refactoring will generate an inconsistent model. However, different approaches are possible. In

general, an operation is pushed down to specialize its behaviour for each subclass and it does

not represent anymore the behaviour of the superclass.

A simplified solution could leave the operation in the superclass in order to preserve the

model consistency; this operation will be overridden by the one defined in the subclasses. An-

other possible solution could interact with the user to determine whether is better to remove the

reference to the operation in the State Machine diagram or make use of another operation.

30

5.4.4 Example

In the example shown in figure 5.2 the snapshot operation has been removed from the Viewer

class (a) and has been added to the subclasses PhotoPlayer and MoviePlayer (b).

It is reasonable to think that the snapshot operation of the MoviePlayer has a different be-

haviour from the one of the PhotoPlayer. In this case the Push Down Operation refactoring is

necessary in order to specialize its behaviour for each subclass.

The snapshot operation of the PhotoPlayer makes sense only if combined with the zoomIn

and rotate operations, otherwise the snapshot will correspond to the entire picture. If the snap-

shot operation is not necessary for the PhotoPlayer and it is better to define it only in the

MoviePlayer, it is possible to apply a Push Down Operation refactoring followed by a Remove

Operation refactoring.

(a) (b)

Figure 5.2: UML Class Diagram - Push Down Operation

5.4.5 Refactoring Implementation

Figure 5.3 shows the Push Down Operation refactoring as a sequence of primitive refactoring

actions. In order to apply the refactoring, it is necessary to provide an input parameter o that

identifies the operation that has to be pushed down.

The refactoring verifies if it is possible to move the specified operation checking all the

necessary preconditions. It verifies that the operation is not referred by a State Machine diagram

and is not already defined in the subclasses. If at least one of these preconditions is not respected,

31

Figure 5.3: Push Down Operation Refactoring

the refactoring will be aborted.

After the verification of all these preconditions the refactoring will copy the operation spec-

ified to each subclass; this action can not be performed by executing the step only once but the

corresponding graph transformation rules must be repeated for each subclass. Every time when

the operation is copied to a subclass, it is also necessary to copy all the defined parameters.

When the operation has been copied to each subclass, it is possible to remove it from the

superclass, the parameters defined for it being removed too.

5.4.6 Graph Transformation Rules

The first step named Check Operation is shown in figure 5.4. It is composed of two NACs

shown in figure 5.5 that verify whether the operation can be pushed down to the subclasses. The

32

operation that is going to be pushed down must be supplied as input parameter to this step.

Figure 5.4: Push Down Operation - Check Operation

Input Parameters o : Operation⇒ 1

Figure 5.5: Push Down Operation - Check Operation NACs

The NAC TransitionDoesNotReferOperation verifies that the operation is not referenced by

any transition in the State Machine diagram. The NAC SubclassDoesNotContainOperation ver-

ifies that the operation is not defined in the subclasses; if at least one of the subclasses contains

the operation, the refactoring could not be applied. If the preconditions are respected, the trans-

formation rule marks the operation with a “Refactoring” node in order to recognize it during the

execution of the subsequent steps.

The strName variable defined in the rule is not an input parameter, but is used by the NACs

to search operations with the same name in the subclasses.

The step named Copy Operation copies the operation to a subclass. A NAC is defined for this

rule in order to avoid that the operation is copied multiple times to same subclass. The copied

operation is marked with a “Refactoring” node that identifies it during the next step used to copy

the parameters of the operation. This step, together with the one that copies the parameters, must

33

Figure 5.6: Push Down Operation - Copy Operation

Figure 5.7: Push Down Operation - Copy Parameter

Figure 5.8: Push Down Operation - Remove Temporary Reference

be repeated multiple times in order to copy the operation to each subclass.

The transformation rule Copy Operation contains some variables that are not defined as input

parameters. The strName and intParameterNumber variables are used respectively to assign the

same name and the same number of parameters to the copied operation. The blnAbstract variable

34

is used to assign to the operation copied the abstract level defined for the subclass.

The step named Copy Parameter copies a parameter from the original operation to the one

created in the previous step; a NAC is defined for this rule in order to avoid that it copies multiple

times the same parameter. The graph transformation rule must be repeated for each parameter

of the original operation.

The transformation rule Copy Parameter contains some variables that are not defined as

input parameters. The strParameterName and intOrder variables are used respectively to assign

the same name and the same position to the parameter copied.

The step named Remove Temporary Reference removes the “Refactoring” node associated

to the operation copied. At this point, it is possible to copy the operation to another subclass

repeating the same steps.

Figure 5.9: Push Down Operation - Remove Parameter

Figure 5.10: Push Down Operation - Remove Operation

When the operation has been copied to all the subclasses, it is possible to remove it from the

superclass. The step named Remove Parameter removes a parameter from the original operation.

This step must be repeated multiple times in order to remove all the associated parameters.

The last step named Remove Operation removes the operation from the superclass and, at

the same time, the associated “Refactoring” node.

35

5.4.7 Consequences

This model refactoring might be extended with the functionality that allows to push down other

class members, like properties. This would mean that the refactoring will be renamed from Push

Down Operation to Push Down Member.

In the current state, the refactoring pushes the operation selected into all child classes. An-

other possible extension might be to let the user select the subclasses into which the operation

will be pushed down. In this case, the list of subclasses into which the operation will be pushed

down must be supplied to the refactoring as input parameter.

36

5.5 Pull Up Operation

5.5.1 Scope

The Pull Up Operation refactoring produces changes on a Class diagram only. Other diagrams

are not affected by the transformations, but it is necessary to check that the operation involved

in the refactoring is not used by other diagrams.

If the operation involved in the refactoring is used by other diagrams –for example by a State

Machine diagram– application of some other complex transformations is necessary to ensure the

models are consistent after the refactoring.

5.5.2 Description

This refactoring is the counterpart of Push Down Operation: it copies an operation from the

subclasses to a super class, deleting the original. This prevents possible duplicated code if a

super class has multiple subclasses.

5.5.3 Motivation and Applicability

The goal of the Pull Up Operation refactoring is to move one operation from one or more

subclasses to its super class. The easiest case of using this refactoring occurs when the operations

have the same body, implying there has been a copy and paste of the code.

The Pull Up Operation refactoring arises some limitations of the current graph represen-

tation of UML models. According to the standard catalogue for source code refactorings [3],

necessary preconditions –like the accessing of properties– must be verified in order to apply

successfully this refactoring. The graph representation does not allow to specify whether the

operations access the properties, as this concept is not part of the UML Class diagram notation.

The signature of an operation is the combination of the operation name along with the num-

ber and types of the parameters and their order. Operations defined in the sibling classes could

carry different signatures and, in this case, the operations can not be pulled up. On the contrary,

the application of the refactoring will generate inconsistencies at source code level even if the

resulting model is correct.

A simplification has been made in the current implementation of the refactoring, that is

operations with the same name are considered identicals. The AGG tool does not provide a

simple mechanisms to verify that the operations contain the same number of parameters. The

37

operation selected must be compared to the corresponding defined in the sibling classes. If the

operations have the same number of parameter, they must be marked as “equivalent”. After

that step, it is possible to verify whether operations with the same name but not marked as

“equivalent” exist in the sibling classes.

In order to verify that the types of the parameters and their order correspond for each op-

eration, it is necessary to realise two different graph transformation rules, because there is a

distinction between primitive types and user–defined types in the graph representation of UML

models. The AGG tool does not provide any simple mechanisms to verify this precondition, and

it is necessary to compare the parameters of each operations. Let Nc be the number of sibling

classes involved in the refactoring and Np the number of parameters of the selected operation,

the computation cost C of the precondition will be C = 2 × Nc × Np. Even if it is difficult to

have a large number of parameters, this solution appear to be not scalable for large environment

system.

If the operations involved in the refactoring are not referenced by any State Machine dia-

grams the task can be accomplished without problems. On the contrary, some considerations

have to be made in order to preserve the consistency of the UML model. A subclass inherits op-

erations from its superclass. When an operation is pulled up the subclass can continue making

use of it and the operation is still part of the behaviour of the subclass. That way, it is possible

for the State Machine diagrams to refer to the pulled up operation.

The current implementation of this refactoring imposes the precondition that the involved

operations must not be referred by a State Machine diagram. This is due to the strict definition

of consistency we have defined: “A transition can refer to operations contained only in the class

represented by the State Machine diagram”.

5.5.4 Example

In the example shown in figure 5.2 the snapshot operation has been removed from the subclasses

PhotoPlayer and MoviePlayer (b) and has been added to the Viewer class (a).

If the snapshot operation has the same behaviour in both subclasses, it is a good practice to

apply a Pull Up Operation refactoring in order to move the operation to the super class and to

avoid duplication of code.

38

5.5.5 Refactoring Implementation

Figure 5.11: Pull Up Operation Refactoring

Figure 5.11 shows the Pull Up Operation refactoring as a sequence of primitive refactoring

actions. In order to apply the refactoring, it is necessary to provide an input parameter o which

identifies the operation that has to be pulled up.

39

The refactoring verifies whether it is possible to move the specified operation by checking

all the necessary preconditions. It verifies that the operation is not referred by a State Machine

diagram, that the operation is not already defined in the super class and that the superclass is not

abstract. If at least one of these preconditions is not respected, the refactoring will be aborted.

After verification of all these preconditions, the refactoring will move the operation specified

to the superclass. When the operation has been moved, it is possible to remove the operation

from all the sibling classes, the parameters defined for them have to be removed as well. This

action can not be performed by executing the step only once, instead the corresponding graph

transformation rules must be repeated for each sibling class.

5.5.6 Graph Transformation Rules

The first step named Check Operation is shown in figure 5.12. It is composed of four NACs

shown in figure 5.13, that verify whether the operation can be pulled up to the super class. The

operation that has to be pulled up must be supplied as input parameter to this step. The strName

variable defined in the rule is not an input parameter but is used by the NACs to search operations

with the same name in the sibling classes and in the super class.

Figure 5.12: Pull Up Operation - Check Operation

Input Parameters o : Operation⇒ 1

The NAC TransitionDoesNotReferOperation verifies that the operation is not referenced by

any transition in the State Machine diagram. The NAC SuperClassDoesNotContainOperation

is used to verify that the operation is not already defined in the super class. The NAC Super-

ClassIsNotAbstract verifies that the refactoring is not trying to move a concrete operation to

an abstract class. The NAC TransitionDoesNotReferOtherOperation verifies that the operation

40

defined in the sibling classes is not referenced by any transition in the State Machine diagram.

If all preconditions are respected, the transformation rule marks the operation with a “Refac-

toring” node in order to recognize it during the execution of the subsequent steps.

(a)

(b)

Figure 5.13: Pull Up Operation - Check Operation NACs

Figure 5.14: Pull Up Operation - Move Operation

The step named Move Operation moves the operation selected from the subclass to the super

41

Figure 5.15: Pull Up Operation - Search Operation

Figure 5.16: Pull Up Operation - Remove Parameter

Figure 5.17: Pull Up Operation - Remove Operation

class. The step named Search Operation searches an operation with the same signature in the

sibling classes; the strName variable is used to compare the names of the operations. When

an operation is matched, the transformation rule marks it with a “Refactoring” node in order to

recognize it during the execution of the subsequent steps. This step must be repeated multiple

42

Figure 5.18: Pull Up Operation - Remove Temporary Reference

times in order to verify each sibling class.

If a sibling class contains an operation with the same signature, the operation has to be

removed. The step named Remove Parameter removes a parameter from the operation matched.

This step must be repeated multiple times in order to remove all the parameters associated.

After that, removal of the matched operation is possible using the transformation rule Remove

Operation.

The last step Remove Temporary Reference will be executed when the operation has been

removed from all sibling classes and it removes the “Refactoring” node associated to the moved

operation.

5.5.7 Consequences

This model refactoring might be extended with the functionality to pull up other class members

like properties. This would mean that the refactoring will be renamed from Pull Up Operation

to Pull Up Member. Moreover, the refactoring could be improved in order to verify whether the

operation with the same name in the sibling classes has the same signature.

The graph representation of UML models should be extended to better verify all the nec-

essary preconditions of this refactoring, as defined in the standard catalogue for source code

refactorings [3].

43

5.6 Extract Class

5.6.1 Scope

The Extract Class refactoring produces changes on a UML Class diagrams only. Other diagrams

are not affected by the transformations, but it is necessary to check that the classes and the

operations involved in the refactoring are not used by other diagrams.

If the classes or the operations involved in the refactoring are used by other diagrams –for

example by a State Machine diagram– application of some other complex transformations is

necessary to ensure the models are consistent after the refactoring.

5.6.2 Description

The Extract Class refactoring splits one class into two separate classes. This is necessary if the

functionality provided by one class would have a better logical structure when it is split into two.

This will improve cohesion and, thereby, the structure of the system.

5.6.3 Motivation and Applicability

This kind of refactoring evolves and improves the structure of the UML models and –as sug-

gested by the name– it extracts a class from an existing one exporting the operations and prop-

erties specified.

Sometimes, it is normal to start the design using a little set of classes and add the operations

to that primitive classes. A more detailed analysis could show that some operations added to a

class may be better encapsulated to an external class used by the existing one. In this case, it

is necessary to create a new class and to export the operations to the newly created class. This

actions is possible only if the operations are not referenced by any State Machine diagram.

The refactoring may be also used to extract a subclass that will be inserted in the inheri-

tance chain of the original class. In this case the class extracted and its operations represent a

specialization of the original class.

5.6.4 Example

Figure 5.19 shows an example of the Extract Class refactoring applied to the Player application.

In figure 5.19(a), the Player class contains two operations used to manage the internal counter

44

(a) Before Refactoring

(b) After Refactoring

Figure 5.19: UML Class Diagram - Extract Class

45

–increaseCounter and decreaseCounter– that contain the logic and the internal representation

of the counter. The player does not need to know that informations and it just needs a way to

access the counter.

A better design of the Player application could be done creating a class that encapsulates

the counter’s logic and that supplies the necessary operations to manage and access the counter.

The Player class uses the operations exposed by the Counter class and does not know its internal

representation. This kind of design is shown in figure 5.19(b).

The second class diagram could be obtained applying an Extract Class refactoring. A new

class, named Counter, has been created and the interested operations, increaseCounter and de-

creaseCounter, have been exported to the newly created class. The variables counter and total

previously defined in the Player class, respectively represent the current value of the counter

and the maximum allowed value. They have been exported to the Counter class. Moreover, a

variable of type Counter has been defined in the Player Class.

5.6.5 Refactoring Implementation

Figure 5.20 shows the Extract Class refactoring as a sequence of primitive refactoring actions.

In order to apply the refactoring, it is necessary to provide input parameters that identify the

class, the operations and the properties involved in the transformations. As reported in figure

5.20 they are:

• c is the existing source class that contains the properties and the operations.

• strName is the name of the new class that has to be created by the refactoring.

• setO[] is the set of operations that has to be exported to the new class.

• p is the property owned by the existing class for which type has to be changed.

• setP [] is the set of properties that have to be exported to the new class.

• blnSubclass specifies whether the new class has to be a subclass of the existing one.

The first step verifies that all the involved operations can be exported to the new class; if at

least one of them raises a problem, the refactoring will be aborted. If all the operations specified

can be exported, the refactoring continues verifying that the diagram does not contain another

class with the name strName. If those requirements are respected, the new class can be created.

46

Figure 5.20: Extract Class Refactoring

The refactoring lets the user choose whether the new class has to be an external class or

a subclass of the existing one. In the first case, it will change the property type that will be

47

associated to the new class. In the second case, it will introduce the new class in the inheritance

chain of the original class.

The refactoring continues exporting the operations and properties specified to the newly cre-

ated class. The actions Export Property and Export Operation do not require any exact execution

order and they may also be executed in parallel. After these steps, it is possible to remove all the

“Refactoring” nodes added to the graph during the refactoring process.

5.6.6 Graph Transformation Rules

Figure 5.21: Extract Class - Check Operation Is Used

Input Parameters setO[i] : Operation⇒ 1, c : Class⇒ 2

Figure 5.22: Extract Class - NACs

The first step, named Check Operation Is Used, is shown in figure 5.21. It is composed of

three NACs shown in figure 5.22 that verify if the operation can be exported to another class.

The source class and an operation must be supplied to this step as input parameters.

The TransitionDoesNotReferOperation NAC verifies that the operation is not referenced by

a State Machine diagram, otherwise the refactoring will lead to an inconsistent diagram when

the operation is moved to another class.

48

The ClassDoesNotContainOperation and SubclassDoesNotContainOperation NACs verify

that the operation is not defined elsewhere in the hierarchy chain of the class. For example, if the

operation is defined in other class of the source class hierarchy, and the operation is exported to a

newly created class, the behaviour of the program may change due to the automatical inheritance

mechanisms.

The strOperationName variable defined in the rule is not an input parameter, but it is used

by the NACs to search operations with the same name in the class hierarchy.

If all those preconditions are respected, the refactoring step marks the operation with a

“Refactoring” node that allows to recognize it during the execution of the subsequent steps. This

step must be repeated for each operation that is going to be moved to the new class matching

every time the corresponding nodes.

Figure 5.23: Extract Class - Create Class

Conditions !(strName.equals(strExistingClass))

Input Parameters c : Class⇒ 1, strName : String

Figure 5.24: Extract Class - Move Generalization References

The step shown in figure 5.23 verifies whether the name specified for the new class is not

defined in the diagram; this action is accomplished by the NAC named Check Class Exists. The

name that has to be assigned to the new class and the source class must be provided as input

49

Figure 5.25: Extract Class - Add Generalization To Subclass

Figure 5.26: Extract Class - Change Property Type

Input Parameters p : Property ⇒ 3

Figure 5.27: Extract Class - Export Property

Input Parameters setP [i] : Property ⇒ 3

parameters to this step.

Some variables are defined in the graph transformation rule. The strName variable represents

the name specified for the new class, the strExistingClass variable represents the name of the

source class and the blnAbstract variable is used to set the same abstraction level of the source

50

Figure 5.28: Extract Class - Export Operation

Input Parameters setO[i] : Operation⇒ 2

Figure 5.29: Extract Class - Remove Temporary Class Reference

Figure 5.30: Extract Class - Remove Temporary Operation Reference

class to the new one. The condition !(strName.equals(strExistingClass)) has been defined

in order to verify that the specified name does not correspond to the name of the source class.

If these tests are successful, the graph transformation rule creates the new class and marks

the source class with a “Refactoring” node that allows its recognition during the execution of the

subsequent steps.

Figure 5.26 shows the step that takes in charge the property provided as input parameter. The

51

graph transformation rule modifies the property specified and assignes to it the newly created

class as type. Moreover, it creates a new property in the new class with the same characteristics

of the one supplied as input parameter. All the variables defined in the graph transformation rule

are necessary in order to copy the attributes of the existing property to the new one. This step is

executed only in the case it is necessary to create an external class.

The step named Move Generalization References shown in figure 5.24 changes the hierarchy

chain of the class. The subclasses of the source class will become subclasses of the newly

created class. The step named Add Generalization To Subclass shown in figure 5.25 adds a

generalization relationship between the newly created class and the source class. The new class

will become a subclass of the existing one. The steps in figures 5.24 and 5.25 are executed only

in the case that the new class must be a subclass of the existing one.

The step shown in figure 5.27 exports a property supplied as input parameter to the newly

created class. If the property specified does not belong to the source class, no changes will be

made to the diagram. However, a different implementation could choose to abort the refactoring.

This step must be executed for each property defined in the set of properties supplied as input

parameter to the refactoring, matching every time the corresponding nodes.

The step shown in figure 5.28 exports an operation belonging to the source class to the newly

created class. This step must be executed for each operation defined in the set of operations

supplied as input parameter, matching every time the corresponding nodes.

Figure 5.29 shows the Remove Temporary Class Reference step that removes the “Refactor-

ing” node added to the source class during the process.

Figure 5.30 shows the Remove Temporary Operation Reference step that removes the “Refac-

toring” nodes added to the operations exported during the process. If the refactoring is aborted

before its completion, execution of this step is necessary in order to restore the original state of

the diagram.

5.6.7 Consequences

This refactoring evolves and improves the structure of the UML models, but it can only be

applied to simple models where the operations are not referenced by State Machine diagrams

and the class inheritance is not used. In chapter 8, one further solution will be analysed in

order to apply this refactoring and preserve the consistency among the different kinds of UML

diagrams.

52

5.7 Generate Subclass

5.7.1 Scope

The Generate Subclass refactoring produces changes on a UML Class diagrams only. Other

diagrams are not affected by the transformations, but it is necessary to check that the involved

class has not an associated State Machine diagram.

5.7.2 Description

This kind of refactoring differs from the Extract Subclass refactoring. Indeed, it generates a new

subclass using the source class as a template. If the existing class is a concrete class, this will be

transformed in an abstract class. All operations defined in the superclass will be copied to the

new subclass.

5.7.3 Motivation and Applicability

During the design phase, it may occur that a class needs one or more specializations that make

use of the same set of operations. It is possible to add the classes needed as subclasses of the

original one. This way the existing “Association” relationships among classes defined in the

UML Class diagrams will be preserved.

The current implementation of the refactoring imposes that the existing class is transformed

to an abstract class. However, it is possible to let the user choose where this change is necessary.

In the UML Sequence diagrams a message send represents a call to an instance of remote

operations. After application of the refactoring, the calls specified to the operations of the super

class are still valid. This is due to the polymorphism of the Object–Oriented programming

languages.

Polymorphism means the ability of a single variable of a given type to be used to reference

objects of different types, and automatically call the operation that is specific to the type of

object which the variable references.

The classes that call operations of the existing class will be still correct after the refactoring.

An instance of one of the subclasses created must be supplied to them instead of an instance of

the superclass.

If a State Machine diagram exists for the class, the refactoring can not be applied. This is due

to the fact that an abstract class can not have any associated State Machine diagram. A different

53

approach is possible: the State Machine diagram can be removed from the existing class and

associated to the newly created subclass.

5.7.4 Example

(a)

(b)

Figure 5.31: UML Class Diagram - Generate Subclass

Figure 5.31 shows an example of this kind of refactoring. The Device class is used by the

Player class and represents the physical device that contains the media. In figure 5.31(a) the

Device class is a concrete class.

54

If multiple kinds of Device are needed, a suitable solution is the specialisation of the Device

class. Figure 5.31(b) shows the Class diagram after the application of the Generate Subclass

refactoring. It has been applied three times in order to generate the subclasses DDisk, DDrive

and USBStick. The Device class has become an abstract class. All subclasses implement the

operations defined in the superclass.

The operations of the Player class that call operations of the Device class do not need to be

modified. An instance of the new subclasses will be supplied to the Player class instead of an

instance of the Device class.

5.7.5 Refactoring Implementation

Figure 5.32 shows the Generate Subclass refactoring as a sequence of primitive refactoring

actions. In order to apply the refactoring, it is necessary to provide the input parameter c that

identifies the source class and the input parameter strName that will be the name of the subclass

generated.

The refactoring verifies whether it is possible to complete the action checking all the neces-

sary preconditions. It verifies that the class does not have any associated State Machine diagram

and that no classes exist with the specified name. If at least one of these preconditions is not

respected, the refactoring will be aborted.

If these requirements are respected, the new class can be created. Subsequently, the refactor-

ing copies the operations of the existing class to the subclass. All parameters of each operation

must be copied, too. This action can not be performed executing the step only once, instead the

corresponding graph transformation rule must be repeated for each operation.

The operations of the existing class are transformed to abstract operations and the class itself

is transformed to an abstract class.

5.7.6 Graph Transformation Rules

The first step, named Create Subclass, is shown in figure 5.33. It is composed of two NACs

shown in figure 5.34. The source class must be supplied as input parameter to this step. The

NAC ClassDoesNotExist verifies that the name specified as input parameter does not correspond

to the name of an existing class. The NAC StateMachineDoesNotExist verifies that a State

Machine diagram is not defined for the source class. The strExistingName variable defined in

the rule is not an input parameter, it corresponds to the name of the existing class.

55

Figure 5.32: Generate Subclass Refactoring

If all preconditions are respected, the refactoring step creates the new subclass and marks

the source class with a “Refactoring” node that allows its recognition during the execution of the

subsequent steps. The source class is modified in order to be an abstract class.

The step Convert Operation To Abstract transforms an operation of the source class in an

abstract operation. The graph transformation rule must be repeated for each operation of the

source class.

The step named Copy Operation copies an operation to the subclass; a NAC is defined for

this rule in order to avoid that the operation is copied multiple times. This step together with

56

Figure 5.33: Generate Subclass - Create Subclass

Conditions !(strName.equals(strExistingClass))

Input Parameters c : Class⇒ 1

Figure 5.34: Generate Subclass - Create Subclass NACs

Figure 5.35: Generate Subclass - Convert Operation To Abstract

the one that copies the parameters must be repeated multiple times in order to copy all the

operations.

The transformation rule Copy Operation contains some variables that are not defined as input

parameters. The strOperationName and intParam variables are used to assign respectively the

same name and the same number of parameters to the operation copied.

The step named Copy Parameter is shown in figure 5.37. It copies a parameter from the

57

Figure 5.36: Generate Subclass - Copy Operation

Figure 5.37: Generate Subclass - Copy Parameter

Figure 5.38: Generate Subclass - Remove Refactoring Node

Figure 5.39: Generate Subclass - Remove Temporary Reference

58

operation contained in the source class to the one created in the previous step. A NAC is defined

for this rule in order to avoid that it copies multiple times the same parameter. The graph trans-

formation rule must be repeated multiple times in order to copy each parameter of the original

operation.

The transformation rule Copy Parameter contains some variables that are not defined as

input parameters. The strName and intOrder variables are used to assign respectively the same

name and the same position to the parameter copied.

The step named Remove Temporary Reference removes the “Refactoring” edge associated to

the operation involved in the previous steps. At this point, it is possible to copy another operation

from the source class to the subclass. The last step named Remove Refactoring Node removes

the “Refactoring” node associated to the source class.

5.7.7 Consequences

This refactoring improves the structure of the UML model and allows to easily add subclasses

to an existing class.

The Generate Subclass refactoring may be combined with a Push Down Property refactoring

in order to move properties defined in the superclass to the subclasses.

59

5.8 Introduce Initial Pseudostate

5.8.1 Scope

This kind of refactoring produces changes on a State Machine Diagram only. Other diagrams

are not affected by the transformation.

5.8.2 Description

The Introduce Initial Pseudostate refactoring is used to improve the structure of a State Machine

diagram. As suggested by the name, it adds an initial pseudostate to a composite state, or region.

5.8.3 Motivation and Applicability

When all the incoming transitions of a region have the same target state, the diagram can be

simplified by adding an initial pseudostate to the region and by setting the region itself as target

of the incoming transitions.

This kind of refactoring does not produce any changes over other kinds of diagrams be-

cause it does not modify the structure of the UML model. No check over the Class diagrams is

needed because the operations associated to the transitions involved in the refactoring will not

be modified.

5.8.4 Example

Figure 5.40 shows a simple example of this kind of refactoring. An initial pseudostate has been

added to the ACTIVE composite state and the target of the transition –that initially refers to the

Ready state– has been changed to become the region itself. An automatic transition has been

defined between the initial pseudostate and the Ready state.

The Ready state will become the default initial state of the ACTIVE region; a transition

whose target is the ACTIVE state will lead the State Machine to the Ready state.

The graph representation of UML Models used for this dissertation does not consider the

actions attached to states, such as do, entry, and exit actions. The former is executed while its

state is active. The entry action is executed when a state is activated. In the particular case of

a composite, its entry action is executed before the entry action of its substates. However, this

action is only executed when a transition crosses the border of the composite. The exit action is

60

(a) Before Refactoring

(b) After Refactoring

Figure 5.40: UML State Machine Diagram - Introduce Initial Pseudostate

executed when a state is exited. In the particular case of a composite, its exit action is executed

after the exit action of its substates.

Referring to the above example, some considerations can be made. If the ACTIVE compos-

ite state contains an entry action, the refactoring become slightly more complicated. In figure

5.40(a) the entry action is executed when the transition leaving the Init state crosses the border

of the ACTIVE composite state.

In figure 5.40(b) the transition does not cross the border of the ACTIVE composite state.

61

In order to preserve the behaviour of the system, moval of the entry action to the transition is

necessary.

5.8.5 Refactoring Implementation

Figure 5.41: Introduce Initial Pseudostate Refactoring

The UML 2.0 Superstructure Specification [4] (p. 591) defines an initial pseudostate in the

following way: “An initial pseudostate represents a default vertex that is the source for a single

transition to the default state of a composite state. There can be at most one initial vertex in a

region. The initial transition may have an action.”.

Before applying the refactoring, it is necessary to verify that the composite state does not

contain an initial pseudostate; this check will be implemented as a precondition.

Figure 5.41 shows the refactoring as a sequence of primitive refactoring actions. In order to

apply the refactoring, it is necessary to provide two input parameters. The parameter r specifies

which composite state, or region, will be modified by the refactoring. The parameter s specifies

the default state of the region.

62

If the precondition is respected, the refactoring proceeds creating the initial pseudostate

inside the composite state. Subsequently, the refactoring changes the target of all transitions

for which the default state is the target. The target state of those transitions will become the

composite state that contains the region r. This action can not be performed executing the

step only once, instead the corresponding graph transformation rules must be repeated for each

transition.

5.8.6 Graph Transformation Rules

Figure 5.42: Introduce Initial Pseudostate - Create Initial Pseudostate

Input Parameters r : Region⇒ 1, s : State⇒ 3

The first step, named Create Initial Pseudostate is shown in figure 5.42. It is composed of

a NAC to ensure that the region does not contain any initial pseudostate. The state s provided as

input parameter will become the default state of the region. The strName variable defined in the

rule is not an input parameter but is used in order to set the name of the initial pseudostate. The

name of the initial pseudostate is composed using the name of the composite state.

The state s provided as input parameter must be part of a composite state, otherwise ap-

plication of this kind of refactoring will not be possible. If the precondition is respected, the

transformation rule marks the default state with a “Refactoring” node in order to recognize it

during the execution of the subsequent steps.

The second step named Move Incoming Transition is shown in figure 5.43. It takes into

account the transitions for which the default state is defined as target. It modifies the target

state of a transition to point to the composite state. For this transformation rule a NAC has been

63

defined to ensure that only transitions that are defined outside the region will be modified. The

graph transformation rule must be repeated multiple times in order to modify all transitions.

Figure 5.43: Introduce Initial Pseudostate - Move Incoming Transition

Figure 5.44: Introduce Initial Pseudostate - Remove Temporary Reference

The last step named Remove Temporary Reference is shown in figure 5.43. It removes the

“Refactoring” node that has been associated to the default state during the execution of the first

step.

5.8.7 Consequences

The Introduce Initial Pseudostate refactoring is used to improve the structure of a State Machine

diagram. It is often combined with the other refactorings like Introduce Region.

Improval of the refactoring is possible extending the graph representation of UML Models,

in order to support the actions attached to states, such as do, entry, and exit actions.

64

5.9 Introduce Region

5.9.1 Scope

This kind of refactoring produces changes on a State Machine Diagram only. Other diagrams

are not affected by the transformation.

5.9.2 Description

The Introduce Region refactoring is used to improve the structure of a State Machine diagram.

As suggested by the name, it introduces a region creating a composite state. The refactoring

adds to the region a set of states selected by the user.

This refactoring is usually combined with the Introduce Pseudostate refactoring and the

Fold States Transitions refactoring in order to simplify the structure of the UML model. The

Fold States Transitions refactoring is the counterpart of Flatten States Transitions refactoring

discussed in chapter 5.11.

5.9.3 Motivation and Applicability

Regions are useful in order to define nested states and transitions. They group states and tran-

sitions in a logical and organized way. This kind of refactoring is particularly useful for the

maintenance of State Machine diagrams. When an application is extended with new function-

alities, the State Machine diagrams may be modified adding new states. A subsequent analysis

could reveal that the states would be better grouped together by means of regions.

The UML 2.0 Superstructure Specification [4] (p. 531) defines a composite state in the

following way: “A composite state either contains one region or is decomposed into two or

more orthogonal regions. Each region has a set of mutually exclusive disjoint subvertices and a

set of transitions.”

Current implementation of this refactoring adds a new composite state that will contain the

region. The possibility to create a concurrent region inside an existing composite state should

be taken into consideration as a possible improvement.

65

(a) Before Refactoring

(b) After Refactoring

Figure 5.45: UML State Machine Diagram - Introduce Region

5.9.4 Example

Figure 5.45 shows an example of this kind of refactoring. The “ACTIVE” composite state

containing a region has been added to the State Machine diagram. The states “Ready”, “Pause”

and “Play” have been moved into the region.

Applying an Introduce Pseudostate refactoring and the Fold States Outgoing Transitions

66

refactoring, it is possible to obtain the State Machine diagram shown in figure 5.40(b).

5.9.5 Refactoring Implementation

Figure 5.46: Introduce Region Refactoring

Figure 5.46 shows the refactoring as a sequence of primitive refactoring actions. In order to

apply the refactoring it is necessary to provide three input parameters. The parameter r specifies

which region will contain the new composite state. The parameter strStateName specifies the

67

name of the new composite state. The parameter setS is the set of states that will be moved

inside the new region.

The current implementation of the refactoring will not move states defined outside of the

region r. An extension of the refactoring is possible in order to permit the selection of states

defined outside of the region. However, application of a Move State refactoring is preferable in

order to move the state from a region to one other.

The refactoring creates the composite state and assigns the specified name to it. Subse-

quently, the refactoring moves the selected states from the region r to the new one. If one or

more states supplied as input parameter to this step are not contained in the region r they will

not be considered. This action can not be performed executing the step only once but the corre-

sponding graph transformation rules must be repeated for each state.

As mentioned in section 4.4, for the purpose of this dissertation a transition between two

states is owned by the “closest” region that contains both states. The refactoring will move

to the new region the transitions between two states that belong to the new region itself. The

graph transformation rule must be repeated multiple times in order to move all the interested

transitions.

5.9.6 Graph Transformation Rules

Figure 5.47: Introduce Region - Create Composite State

Input Parameters r : Region⇒ 1, strStateName : String

The first step named Create Composite State is shown in figure 5.47. The region that will

contain the new composite state and the name of the new composite state must be provided as

input parameters to the graph transformation rule.

The transformation rule creates the new region inside a composite state. It marks the source

68

Figure 5.48: Introduce Region - Move State

Input Parameters setS[i] : State⇒ 2

Figure 5.49: Introduce Region - Move Transition

region with a “Refactoring” node in order to recognize it during the execution of the subsequent

steps. It also adds a “Refactoring” edge between the two regions, that means the refactoring will

move the states from the source region to the new one.

The step named Move State is shown in figure 5.48. It moves a state supplied as input

parameter from the source region to the one that has been created in the previous step. If the

state does not belong to the source region the refactoring will produce no changes. The graph

transformation rule must be repeated for each state selected by the user.

The step named Move Transition is shown in figure 5.49. It moves to the new region a

transition between two states that belong to the source region. The graph transformation rule

must be repeated multiple times in order to move all the interested transitions.

The step named Move Self Transition is shown in figure 5.50. It moves to the new region

a self transition defined for a state that belongs to the source region. The graph transformation

rule must be repeated multiple times in order to move all the interested transitions.

The step named Remove Temporary Reference removes the “Refactoring” node associated

69

Figure 5.50: Introduce Region - Move Self Transition

Figure 5.51: Introduce Region - Remove Temporary Reference

to the source region during the execution of the first step.

5.9.7 Consequences

The Introduce Region refactoring improves the structure of a State Machine diagram. It is useful

in order to organise states and transitions in a logical way.

Some improvements may be done to this refactoring in order to support the creation of

concurrent regions.

70

5.10 Remove Region

5.10.1 Scope

This kind of refactoring produces changes on a State Machine Diagram only. Other diagrams

are not affected by the transformation.

5.10.2 Description

The Remove Region refactoring is the counterpart of Introduce Region refactoring previously

discussed. As suggested by the name, it removes a region from a State Machine diagram. It

moves states and transitions contained in the region to the parent region. The refactoring also

removes the composite state that contains the region.

This refactoring is usually combined with the Remove Pseudostate refactoring and the Flat-

ten State Transitions refactoring in order to reorganize the structure of the UML model.

5.10.3 Motivation and Applicability

The Remove Region refactoring is particularly useful for maintenance of State Machine dia-

grams. When an application evolves, the functionalities of the system may change and the State

Machine diagrams may be modified to reflect these changes. A subsequent analysis could reveal

that the states contained in a region are not related anymore and they would be better grouped in

a different way.

The upper region, directly connected to the State Machine, can not be removed as it repre-

sents the whole State Machine diagram.

The UML 2.0 Superstructure Specification [4] (p. 531) defines a composite state in the

following way: “A composite state either contains one region or is decomposed into two or

more orthogonal regions. Each region has a set of mutually exclusive disjoint subvertices and a

set of transitions.”

Current implementation of this refactoring does not allow removal of concurrent regions.

The possibility to remove a concurrent region defined inside a composite state should be taken

into account as a possible improvement.

The graph representation of UML Models used for this dissertation does not consider the

actions attached to states, such as do, entry, and exit actions. If the composite state that is going

to be removed contains entry or exit actions, the refactoring becomes slightly more complicated.

71

If entry and exit actions are simply removed, the behaviour of the system will change. In or-

der to preserve the behaviour, it is necessary to move the entry action to the incoming transitions

and the exit action to the outgoing transitions.

5.10.4 Example

Figure 5.45(b)(a) shows an example of this kind of refactoring. The “ACTIVE” composite state

containing a region has been removed from the State Machine diagram. The states “Ready”,

“Pause” and “Play” are part of the upper region, directly connected to the State Machine.

5.10.5 Refactoring Implementation

Figure 5.52: Remove Region Refactoring

Figure 5.52 shows the refactoring as a sequence of primitive refactoring actions. In order to

apply the refactoring, it is necessary to provide an input parameters r that specifies which is the

region that will be removed.

72

The refactoring checks that the region r is not a concurrent region. Subsequently, it verifies

that ingoing and outgoing transitions do not exist for the specified region. The last precondition

checked by the refactoring avoids that a region containing pseudostates could be removed. If at

least one of these preconditions is not respected the refactoring will be aborted.

After verification of all these preconditions, the refactoring proceeds moving all states and

transitions from the region r to the parent region. The actions Move State and Move Transition

do not require any exact execution order and they may also be executed in parallel. This action

can not be performed executing the steps only once, but the corresponding graph transformation

rules must be repeated for each state and transition.

When all states and transitions has been moved, the refactoring continues removing the

region r. The last step removes the composite state that was the container of the region r.

5.10.6 Graph Transformation Rules

Figure 5.53: Remove Region - Region Can Be Removed

Input Parameters r : Region⇒ 1

Figure 5.54: Remove Region - Region Can Be Removed NACs

The first step named Region Can Be Removed is shown in figure 5.53. It is composed of

four NACs shown in figure 5.54, that verify all necessary preconditions. The region that have

to be removed must be provided as input parameter to the graph transformation rule.

73

Figure 5.55: Remove Region - Move State

Figure 5.56: Remove Region - Move Transition

The NAC IncomingTransitionDoesNotExist verifies that the selected region is not the target

of any incoming transition. The NAC OutgoingTransitionDoesNotExist verifies that the region is

not the source of any outgoing transition. The NAC DoesNotContainPseudostate is used to ver-

ify that the selected region does not contain any pseudostates. The NAC IsNotConcurrenRegion

verifies that the region is not defined as concurrent region.

If the preconditions are respected, the transformation rule marks the region with a “Refac-

toring” node in order to recognize it during the execution of the subsequent steps.

The step named Move State is shown in figure 5.55. It moves a state from the selected region

to the parent region. The graph transformation rule must be repeated multiple times in order to

move all states contained by the region.

The step named Move Transition is shown in figure 5.56. It moves a transition from the

selected region to the parent region. The graph transformation rule must be repeated multiple

times in order to move all transitions contained by the region.

The actions Move State and Move Transition do not require any exact execution order and

74

Figure 5.57: Remove Region - Delete Region Node

Figure 5.58: Remove Region - Delete State Node

they may also be executed in parallel.

The step named Delete Region Node removes the selected region from the graph. The

“Refactoring” node is moved to the composite state in order to recognize it in the next step.

The step named Delete State Node is shown in figure 5.58. It removes the composite state

that previously contained the region.

5.10.7 Consequences

The Remove Region refactoring is useful to reorganize states and transitions during the design

phase.

Some improvements may be done to this refactoring in order to support the deletion of

concurrent regions. Moreover, it is possible to extend the graph representation of UML Models

in order to support the actions attached to states, such as do, entry, and exit actions.

75

5.11 Flatten States Transitions

5.11.1 Scope

This kind of refactoring produces changes on a State Machine Diagram only. Other diagrams

are not affected by the transformation.

5.11.2 Description

The Flatten States Transitions refactoring is used to improve the structure of a State Machine

diagram. This kind of refactoring is often part of more complex refactorings. It is usually

combined with the Remove Region refactoring previously formalised. It is composed of two

different transformations that are identified with the name Flatten States Outgoing Transitions

and Flatten States Incoming Transitions.

The Flatten States Outgoing Transitions transformation replaces an outgoing transition,

starting from a composite state, with the corresponding transitions associated to each sub–states.

The Flatten States Incoming Transitions transformation replaces an incoming transition,

leading to the composite state, with the corresponding transitions associated to each sub–states.

The two transformations present the same behaviour in order to modify outgoing and incom-

ing transitions. This chapter formalise the Flatten States Outgoing Transitions transformation,

and in section 5.11.8, the differences of the Flatten States Incoming Transitions transformation

will be discussed.

In this chapter, the Flatten States Outgoing Transitions transformation is also referred as

Flatten States Outgoing Transitions refactoring.

5.11.3 Motivation and Applicability

When an outgoing transition starting from a composite state is triggered by its event, it is exe-

cuted independently of the sub–state the State Machine resides in. This means that the outgoing

transition could be replaced by transitions associated to each sub–state of the composite state;

these transitions would have the same target state of the original one.

An outgoing transition that is automatically triggered exiting the composite state could be

defined in the State Machine diagram. This particular transition can not be replaced by transi-

tions leaving each sub–states. Therefore, the refactoring will be applied only to the transitions

for which an event is defined.

76

The Flatten States Outgoing Transitions refactoring modifies a State Machine diagram only.

It does not produce any changes over other kinds of diagrams, because it does not modify the

structure of the system and all transitions involved in the refactoring preserve the same charac-

teristics.

5.11.4 Example

(a) Before Refactoring

(b) After Refactoring

Figure 5.59: UML State Machine Diagram - Flatten States Outgoing Transitions

Figure 5.59 shows an example of this kind of refactoring. Before applying the refactoring

77

there is a transition whose source and target are respectively the ACTIVE region and the Wait

state. That transition is triggered by the event Drive Button of the Player. The refactoring adds

a similar transition to each sub–state of the ACTIVE region and removes the original one. The

target state of these new transitions is the same as the original one.

A transition could be characterized also by a guard and an associated action. If this infor-

mation is defined in the UML model for the original transition it must be copied to the new

transitions.

The same could be done for the outgoing transition whose target is the OFF state, triggered

by the Off Button of the Player. When the Off Button of the Player is pressed, the sub–state the

Player currently is in is not relevant, the Player being always turned off.

The graph representation of UML Models used for this dissertation does not consider any

actions attached to states, such as do, entry, and exit actions.

Referring to the above example, some considerations can be made. If the ACTIVE compos-

ite state contains an exit action, the refactoring becomes slightly more complicated. In figure

5.59(a) the transition between the composite state and the Wait state does not cross the border of

the ACTIVE composite state. In figure 5.59(b) the exit action of the composite state is executed

when the transitions between the composite state and the Wait state are triggered. This will cause

the behaviour of the system to change. In order to preserve the behaviour of the system, it is

necessary to move the exit action to the transitions for which it has to be executed and remove

the exit action from the composite state.

5.11.5 Refactoring Implementation

Figure 5.60 shows the refactoring as a sequence of primitive refactoring actions, the action

named Transform Transitions is a complex action and will be detailed later.

In order to apply the refactoring, it is necessary to provide an input parameter r that repre-

sents the region that is going to be modified. The refactoring verifies that the region is not part

of a composite state containing concurrent regions. After verification of the necessary precon-

ditions, it will automatically verify whether at least one outgoing transition is defined for the

region supplied as input parameter.

The Select Target State step searches in the graph a state that is defined as target for an

outgoing transition. With the subsequent steps the transitions associated to each sub–state of the

region will be created. During this process, some “Refactoring” nodes are used to identify the

78

Figure 5.60: Flatten States Outgoing Transitions Refactoring

involved transitions. When the transition has been copied to each sub–state of the region, the

original one will be removed. If the diagram still contains outgoing transitions for the specified

region a new state will be taken into account and the same actions will be repeated.

When the refactoring has moved all the transitions, it will remove the “Refactoring” nodes

that have been added in order to recognize the interested region during the transformations. This

action is reported in the diagram as Remove Temporary Reference.

The Transform Transitions action is a complex action and its implementation using the AGG

tool has underlined some limitations of the tool chosen. When an outgoing transition has been

detected, it is necessary to copy it to all the sub–states of the region, and the AGG tool does not

provide a mechanism to copy a node multiple times. This is especially the case if the number of

copies varies for different application of the graph transformation rule.

It is therefore necessary to repeat multiple times the copy of the current transition and pro-

vide the logic for verifying that the transition has been copied to all sub–states.

Figure 5.61 shows the implementation of the Transform Transitions action. In section

5.11.7 some possible alternatives will be discussed.

79

Figure 5.61: Transform Transitions

80

5.11.6 Graph Transformation Rules

The first step named Check Region is shown in figure 5.62. The NAC IsNotConcurrentRegion

of this rule verifies that the region supplied as input parameter is not part of any composite state

that contains concurrent regions. If the precondition is respected, a “Refactoring” node is added

in order to identify the region during the execution of the subsequent steps. An input parameter

r that specifies which region will be modified by the refactoring has to be provided to the graph

transformation rule.

A composite state may have multiple outgoing transitions leading to different states. The

step shown in figure 5.63 searches an outgoing transition and marks the target state with a

“Refactoring” node in order to identify it. If any state could be selected by this transformation

step, the region does not have any outgoing transition and the refactoring must be terminated as

described in the previous section.

Figure 5.62: Flatten States Outgoing Transitions - Check Region

Input Parameters r : Region⇒ 2

Figure 5.63: Flatten States Outgoing Transitions - Select Target State

The UML 2.0 Superstructure Specification [4] allows multiple transitions to share the same

source and target states. In that case, it is possible to have more outgoing transitions that share the

81

Figure 5.64: Flatten States Outgoing Transitions - Select Complete Transition

Figure 5.65: Flatten States Outgoing Transitions - Select Transition Without Guard

same target state and the different transitions need to be managed separately. The transformation

rules shown in figures 5.64 and 5.65 select a transition and mark it with a “Refactoring” node,

the former searching the complete transitions and the latter matching transitions that do not

contain a guard.

The following steps, that copy the transition to each sub–state of the region, must be repeated

multiple times and all added “Refactoring” nodes are necessary to clearly identify the transition

that has to be copied.

Figures 5.66 and 5.67 represent the steps that copy the transition and its associated nodes

to a sub–state of the selected region. The new transition is created in the region that contains

the original one and is marked with a “Refactoring” node that allows to recognize it during

the execution of the next step. Two variables are defined for that rules and they are necessary

82

Figure 5.66: Flatten States Outgoing Transitions - Copy Complete Transition

Figure 5.67: Flatten States Outgoing Transitions - Copy Transition Without Guard

to recreate the transition with the same informations. The strEventName variable is used to

copy the event that triggers the transition, and the strExpression variable memorises the boolean

expression of the guard optionally associated to the transition. A “Refactoring” node is added to

the source sub–state of the region to indicate that the transition has already been copied into it.

When a transition is triggered by its event, an operation may be executed and an association

between the transition and the operation is defined in this case. Figure 5.68 describes the rule

named Copy Association To Operation that copies the association to the new created transition

if it is defined for the original one. The association must be copied to each transition that has

been generated in the previous step and, for that purpose, the properties of the “Refactoring”

node associated to the transitions are modified to clearly recognize the nodes that have been

processed.

83

Figure 5.68: Flatten States Outgoing Transitions - Copy Association To Operation

Figure 5.69: Flatten States Outgoing Transitions - Remove Association To Operation

Figure 5.70: Flatten States Outgoing Transitions - Remove Complete Transition

The step named Remove Association To Operation is shown in figure 5.69. It is used to

remove the optional association between the original transition and the operation that is executed

when the transition is triggered by its event. If the original transition is not associated with an

operation, the execution of this step will produce no changes over the diagram.

The steps represented in figures 5.70 and 5.71 have the responsibility to remove the original

transition and all its associated nodes. The former removes transitions characterized by a guard

84

Figure 5.71: Flatten States Outgoing Transitions - Remove Transition Without Guard

Figure 5.72: Flatten States Outgoing Transitions - Remove Temporary Copied Node

Figure 5.73: Flatten States Outgoing Transitions - Remove Temporary Transition Node

Figure 5.74: Flatten States Outgoing Transitions - Remove Temporary Target

and the latter transitions without a guard.

The rules Remove Temporary Copied Node and Remove Temporary Transition Node are

shown respectively in figure 5.72 and 5.73. They remove the “Refactoring” node added to the

sub–states during the copy of the transition and used by the previous steps. This steps must be

repeated multiple times in order to remove all the “Refactoring” nodes.

85

Figure 5.75: Flatten States Outgoing Transitions - Remove Temporary Reference

The step Remove Temporary Target shown in figure 5.74 removes the “Refactoring” node

that have been added to the selected target state during the execution of the Select Target State

step. At this point it is possible to look for another outgoing transition with a different target

state. The final step Remove Temporary Reference, shown in figure 5.75, removes the “Refac-

toring” node that has been associated to the region provided as input parameter.

5.11.7 Alternative implementations

As introduced in previous sections the Transform Transitions action is a complex action and its

implementation using the AGG tool has underlined some limitations of the tool chosen. When

an outgoing transition has been detected, it is necessary to copy it to all the sub–states of the

region and the AGG tool does not provide any mechanism to easily copy a node multiple times.

This is especially the case if the number of copies varies for different application of the graph

transformation rule. It is therefore necessary to repeat the copy of the current transition multiple

times and provide the logic for verifying that the transition has been copied to all sub–states.

The current graph transformation notation is not powerful enough and does not suffice to

easily define this kind of refactoring. Many studies have been done to search a formal solution to

this problem, and some proposals have been presented to close this gap. In particular D. Janssens

and N. Van Eetvelde have proposed and formally defined in their article [29] a way for cloning

and expanding graph nodes and graph patterns. These operations make graph transformations

more expressive and facilitate definition of refactorings using graph transformations.

Moreover, a transition could be characterized by a guard and an associated action. The

guard is a boolean condition that is evaluated when a transition initiates. The associated action

is an operation that will be performed when the transition is triggered. The AGG tool does not

provide any mechanism to specify optional nodes that have to be managed by the transformation.

The possibility to define optional graph patterns in the graph transformation rules is another

necessary enhancement and makes graph transformations more powerful.

86

Figure 5.76: Cardinality Example

A. Agrawal, G. Karsay and F. Shi [30] propose to define a cardinality property for the graph

nodes and graph edges in the graph transformation rules. This technique allows the expression of

a large number of graph patterns in a compact way and the specification of optional components

in a pattern by having the cardinality of optional components as (0..1).

Figure 5.76 shows a possible example of the use of cardinalities. In the right–upper corner

of the “Guard” node, a cardinality has been specified. The value (0..1) means that the “Guard”

node could be present 0 or 1 times. That way, the graph pattern represented in the figure will

match transitions that contain a guard and transitions that do not contain a guard.

Using the AGG tool, there are two possible ways for implementing the Transform Transitions

action. The first option, described in figure 5.77, consists of creation of a rule for each possible

graph pattern. For example, referring to figure 5.76 it is necessary to create two different rules

in order to match transitions that contain a guard and transitions that do not contain a guard.

Obviously, these rules are very similar and they differ only for the optional nodes.

In the solution shown in figure 5.77, a first set of rules is defined for a complete transition

that contains an event, a guard, and an associated operation. This set of rules consists of the

necessary operations to select a complete transition, copy it to each sub–state, and remove it.

After copy of all the complete transitions, it is necessary to copy the transition that contains only

the guard or only the associated operation, and two similar sets have been defined to match and

manage these patterns. Finally, it is necessary to define another set of rules for the transitions

that do not contain the guard nor the associated operation.

Each set of rules is composed of three rules. One rule is used to select the transition, one is

used to copy the transition to each sub–state, and one more removes the original transition. Let

Nopt be the number of optional nodes associated to the transition, the total number of necessary

87

Figure 5.77: Transform Transitions Option 1

88

Figure 5.78: Transform Transitions Option 2

89

graph transformation rules will be Nrules = 3 × 2Nopt . If other optional nodes are added, the

number of necessary graph transformation rules will increase exponentially.

Let Ns be the number of sub–states of the region and Nt the number of transitions that have

to be modified, the computation cost of the transformation will be C = Nt × (2 + Ns).

The second option described in figure 5.78 uses a different approach to implement this

transformation. A transition along with its event is selected and is copied to each sub–state of

the region. If the original transition contains a guard or an associated operation, they will be

copied to each newly created transition. For each optional node, there is a correspondent graph

transformation rule that matches it and copies it. One more rule is necessary in order to delete

the original transition.

The total number of necessary graph transformation rules of this solution will be Nrules =

3 + Nopt. If other optional nodes are added, the number of necessary graph transformation rules

will increase linearly.

The computation cost of the transformation will be C = Nt × (2 + Ns + Ns × Nopt).

The computation cost will increase proportionally to the number of optional elements. The

graph transformation rules that remove the “Refactoring” node have been excluded from the

computations because they are not relevant.

Both solutions are not really satisfiable, and an improvement of the graph transformation

rules is necessary to achieve good results. The first approach will generate an higher number of

transformation rules and it would not be easily maintainable and scalable. The second approach

requires a smaller number of transformation rules but presents an higher computation cost.

For the current implementation, a combination of the two options has been used; this way it

is possible to give an example of the graph transformation rules of both solutions. This solution

is specific for the current graph representation and tries to limit at the same time the number of

graph transformation rules and the computation cost of the transformation.

The final solution described in figure 5.61 is divided in two similar parts: the former man-

ages the complete transitions, and the latter manages the transitions without the guard. The

operation associated to the transitions is copied as described in the second option.

5.11.8 Flatten States Incoming Transitions

The Flatten States Incoming Transitions transformation is similar to the Flatten States Outgoing

Transitions. It replaces an incoming transition, with the corresponding transitions associated to

90

each sub–states, leading to the composite state.

Like for the Flatten States Outgoing Transitions transformation, if an entry action is defined

in the composite state the refactoring becomes slightly more complicated. In order to preserve

the behaviour of the system, it is necessary to move the entry action to the transitions for which

it has to be executed and remove the entry action from the composite state.

The necessary transformation steps are the same as for the Flatten States Outgoing Tran-

sitions and they are functionally equivalents. In this case, the transformation steps take into

account incoming transitions instead of outgoing transitions. The graph transformation rule

shown in figure 5.79 has been implemented as example. It correspond to the step Select Tar-

get State shown in figure 5.63. The two graph transformation rules differs only for the order

of the “source” and “target” edges associated to the “Transition” node. This consideration is

correct for all the graph transformation rules defined in the Flatten States Outgoing Transitions

transformation.

Figure 5.79: Flatten States Incoming Transitions - Select Source State

The AGG tool does not provide any mechanism to parametrise the edge defined in the graph

transformation rule. The possibility to parametrise the edge defined in the graph transforma-

tion rules could be another possible enhancement and would make graph transformations more

powerful.

Such a feature would permit to use the same set of graph transformation rules in order to

apply the Flatten States Outgoing Transitions and Flatten States Incoming Transitions transfor-

mations.

The AGG tool offers another solution to this problem. It is possible to change the graph

representation of UML models in order to have a single set of graph transformation rule. Figure

5.80 shows a simplified version of the Type Graph where “source” and “target” edges has been

replaced by nodes.

91

Figure 5.80: Type Graph alternative

The “Transition” node is associated with the “Vertex” node. The role of the association is

specified using the “Source” and “Target” nodes. The “Role” node is defined as abstract node,

i.e. it can not be instantiated in the graph. However, the “Role” node can be used to define the

graph transformation rule.

Figure 5.81 shows the graph transformation rule that corresponds to the rules Select Target

State and Select Source State previously discussed. This graph transformation rule allows to

match at the same time both incoming and outgoing transitions.

Figure 5.81: Flatten States Transitions - Select State

Using this graph representation of UML Models, it is necessary to add a check in order to

ensure that a “Transition” node is associated with exactly one “Source” node and exactly one

“Target” node. It is not possible to express such a condition in the Type Graph.

92

5.11.9 Consequences

This kind of refactoring produces a more intuitive model but does not really improve the structure

if it is used by itself. It is often part of more complex refactorings, or in general it is necessary

in order to apply some complex changes to the models. It is usually combined with the Remove

Region refactoring.

Some improvements may be done to this refactoring, in order to support the actions attached

to states, such as do, entry, and exit actions. Moreover, it is possible to extend the graph repre-

sentation of UML Models in order to have a single set of graph transformation rule.

Chapter 6

Model Refactoring Tool

In this chapter we will illustrate the possibility of developing model refactoring tools using graph

transformations. For this purpose, we have developed a prototype application that serves as a

feasibility study. Using the prototype application, we have also performed a validation of model

refactorings previously formalised and we have verified their correctness.

6.1 Implementation

The AGG graph transformation engine is delivered together with an API (Application Program-

ming Interface) that allows to integrate the internal graph transformation engine into other envi-

ronments.

We have chosen to developed a prototype application using the AGG API. That way, it has

been possible to make use of the graph transformation rules defined in chapter 5. The prototype

application serves as a feasibility study to illustrate that development of model refactoring tools

is possible. Moreover, it serves to verify the correctness of the model refactorings previously for-

malised. This prototype application will supply guidelines for future work and put into evidence

some possible enhancements for AGG in order to better support model refactorings.

The representation of the control flow has been a crucial point for the implementation of

the prototype application. The control flow describes the order in which the individual graph

transformation rules of each model refactoring have to be executed.

At the moment, the AGG tool does not provide any satisfactory solution for organizing

and combining rules, and the supplied mechanisms were not sufficient for describing model

93

94

refactorings.

The prototype application avoids the underlied problem by using a custom control structure

that represents the control flow of model refactorings. In section 6.2.1 we will describe how this

control structure has been implemented.

Figure 6.1 shows the graphical user interface of the model refactoring application that we

developed in JAVA by making use of the AGG API.

Figure 6.1: Model Refactoring Application

The application internally loads a file containing the model refactoring specifications and the

necessary graph transformation rules. It allows then to open files in GGX format containing the

UML models to be refactored. The UML model must respect the syntax, or type graph, defined

in section 4.4. Using the “Refactoring” context menu, the user can apply the different model

refactorings. When necessary, the user will be prompted to enter the input parameter values and

if necessary to supply a match if the model refactoring can be applied to different parts of the

UML model.

The prototype application also allows the user to save the resulting UML model and visualise

it using the AGG graphical user interface.

95

6.2 Control Structures

As anticipated in section 6.1, there exists a need for a high-level control structure that can drive

the application of elementary graph transformation rules and allows to manage the complexity

of model refactorings.

The syntax of UML Interaction Overview diagrams has been used in chapter 5 to formally

depict the control flow and to specify in which order the rules must be applied (see figure 5.41 for

an example of Interaction Overview diagrams). The interaction occurrence frames that compose

the diagram indicate an activity or operation to be invoked. For the purpose of defining model

refactoring, they have been associated to graph transformation rules. Some custom notations

have been added to enrich the diagram with all the necessary informations. In particular, the

input and output parameters for each atomic step have been reported.

In order to apply a model refactoring, it is necessary to provide the corresponding control

flow to the model refactoring application. We have focused our efforts on searching a suitable

control structure that allows representation of the control flow of model refactorings and drives

the application of graph transformation rules.

The AGG tool does not provide any satisfactory solution for organizing and combining rules,

and the supplied mechanisms were not sufficient for describing model refactorings. In section

6.2.1 we will explain the custom control structure that we have implemented in order to represent

the control flow of model refactorings and drive the application of graph transformation rules.

Section 6.2.2 outlines the control structures available in the AGG tool.

6.2.1 Graph–based control structure

The major concept of this dissertation is the representation of UML models using graph–based

structures. The same way, the control flows based on the UML Interaction Overview diagram

syntax have been represented using graphs, and have been used to drive the application of graph

transformation rules. The custom control structure adds the notion of “controlled” graph trans-

formation, which was not previously available in AGG.

When the prototype application has to apply a model refactoring, it loads the corresponding

graph representing the control flow. It searches the starting point and prompts the user to insert

the necessary parameter values. The application walks through the graph to determine which

graph transformation rules have to be applied. It continues exploring the graph until it reaches a

96

final point reporting the result to the user.

Figure 6.2 reports the Type Graph implemented with AGG that we have defined in order to

represent the control flow.

Figure 6.2: Interaction Overview Diagram Type Graph

The RefInitial entity corresponds to the starting point of the flow of control. The RefFinal

entity is used to terminate the execution. Several nodes of this kind may exist at the same time in

order to specify a successful conclusion of the refactoring or to signal errors during its execution.

The RefDecision entity corresponds to the decision point of the UML Interaction Overview

diagram, like the RefRule entity corresponds to the interaction occurrence frames. The RefNode

entity has been added in order to simplify the Type Graph, but it can not be instantiated in the

graph. The RefMatch entity does not correspond to any entity of the UML Interaction Overview

diagram, but is used to select a list of matches which will be subsequently used to apply a graph

transformation rule.

The RefParameter entity is used to define the input and output parameters for each refactor-

ing step. Only RefRule and RefMatch are allowed to set output parameters. Table 6.1 illustrates

the meaning of the output parameters based on their types.

The RefParameter entities can be defined as input parameters for the refactoring steps. In this

case, values defined by the user are also permitted. The attribute userInput of the RefParameter

97

RefRule RefMatch

Matches – List of selected matches

Int – Number of matches

Boolean Result of the execution –

String – –

Table 6.1: Meaning of the output parameters.

entity is used to detect which parameters require user interaction.

Decision points contain boolean expressions which must be evaluated by the application,

in order to determine the subsequent step of the model refactoring. For that purpose, we have

added an interpreter to the prototype application.

Figure 6.3 shows the control flow we have implemented for the Introduce Initial Pseudostate

refactoring. It corresponds to the one reported in figure 5.41.

Figure 6.3: Control Flow – Introduce Initial Pseudostate

98

The RefInitial node is the starting point of the flow of control. The user has to specify

two input parameters that are provided to the subsequent rule named IntroducePseudoState-

CreateInitialPseudostate. The parameter r specifies which is the composite state or region that

will be modified by the refactoring. The parameter s specifies the default state of the region.

The result of the execution of the rule is saved to the parameter named present. It is provided

as input parameter to the subsequent RefDecision node, identified using the RefNext edge. The

RefDecision node evaluates the value of the parameter present. If the value is “false”, the

subsequent step is a RefFinal node that signal the error: the refactoring can not be applied

because an Initial Psuedostate is already present in the selected region.

If the value of the parameter present is “true”, the rule named IntroducePseudoState-

MoveIncomingTransition will be executed. It will be repeated for each transition that lead to

the default state. When all transitions have been moved, the rule named IntroducePseudoState-

RemoveTemporaryReference will be executed. It removes all “Refactoring” nodes added to the

graph during the execution of the first step. The target of the RefNext edge associated to the node

is a RefFinal node. It specifies a successful conclusion of the refactoring.

6.2.2 AGG Rule Sequence

The AGG graph transformation tool [24] allows the use of rule layers in order to coordinate

the application of rules. Each rule is assigned to a certain layer. Rules of the same layer are

applied in a non–deterministic manner. Starting with layer 0, the rules of one layer are applied

as long as possible. Thereafter, the next layer is executed. After execution of the highest layer,

the transformation is finished.

Recently, a newer version of the AGG tool has been released [31]. The graph transformation

engine has been improved and two new control structures for graph transformation have been

added.

Control of the execution order is now possible by setting rule priorities. However, this

option can not be combined with the use of layers, and they appear to be very similar. Both

those mechanisms do not suffice to express model refactoring.

The real improvement of the newer version of AGG is the possibility to define a transfor-

mation rule sequence that specifies in which order the rules must be applied. A transformation

rule sequence is a control structure which defines an ordered set of rule subsequences and rule

iterations.

99

The dialog in figure 6.4 is part of the AGG tool and allows to define a rule sequence. In

particular, it shows the transformation rule sequence that corresponds to the Introduce Initial

Pseudostate refactoring described in section 5.8.5.

Figure 6.4: AGG rule sequence example

Looking at the textual view of the transformation rule sequence reported in the bottom of the

dialog, we can see three rule subsequences that are being performed. Creation of a new empty

subsequence is possible using button “New Subsequence”. By selecting one or more rules in

the first table and clicking on the button “Add”, they can be put into the currently selected sub-

sequence. The first subsequence with the rule IntroducePseudoState-CreateInitialPseudostate

should be applied only once. The Iterations field of the second and third tables can be used to

100

define how long a rule subsequence or a single rule should be applied. It is also possible to put

a star (*), which means “as long as possible”. The second subsequence IntroducePseudoState-

MoveIncomingTransition should be applied as long as possible, and the third subsequence with

the rule IntroducePseudoState-RemoveTemporaryReference should be applied only once.

The behaviour of this transformation rule sequence corresponds to the one described in

figure 5.41, meaning that for one set of input values the resulting set of output values is

the same. However, a relevant difference can be noticed: when the IntroducePseudoState-

CreateInitialPseudostate rule of the transformation rule sequence fails, the subsequent rules

will be executed producing no changes. In fact, it would be preferable to stop the refactoring.

This difference is caused by some limitations of the transformation rule sequence. It does

not allow to have a complete control of the rules execution process. It is not possible to stop the

application of rules and it is not possible to apply a different rule, nor set of rules, depending on

the result of a previous one.

Moreover, the transformation rule sequence allows the definition of just one level of sub-

sequences, and it is not possible to group the rules in a more complex way. The refactoring

Flatten States Outgoing Transition described in section 5.11.5 requires at least one more level

of subsequence in order to be correctly represented.

The limitation of having only one transformation rule sequence definitely discourages its

use in order to represent model refactorings. It would be preferable to have a transformation

rule sequence corresponding to each model refactoring.

6.3 Validation

In this section the results of some detailed tests that have been performed with the prototype

application are reported. The Player model previously illustrated has been used as running

example. It was not possible to test the implemented application using industrial UML models,

because the conversion of UML models to graphs has not been automated yet and it would go

beyond the scope of this dissertation. Other researches are currently exploring the possibility to

automatically convert UML model to graphs.

The correctness of model refactorings has been validated through a large number of tests.

The resulting graphs have been analysed in order to ensure that they conform to the Type Graph

101

defined in chapter 4.4. The AGG tool allows easy verification of this requirement. The con-

version of graphs to UML models has not been automated yet. We have manually verified that

the resulting graphs conform to the UML metamodel. Each graph has been analysed in order to

ensure that it corresponded to a consistent UML Model.

When possible, we have subsequently applied the inverse model refactoring. We have com-

pared the resulting graph to the original one in order to ensure they are identical.

6.3.1 Pull Up Operation and Push Down Operation

The example shown in this section corresponds to the one illustrated in figure 5.2.

Figure 6.5: Operation Pushed Down

Figure 6.5 shows the graph produced by the prototype application after application of the

Push Down Operation refactoring to the graph reported in figure 6.6. The snapshot operation

has been pushed down to the classes MoviePlayer and PhotoPlayer.

102

Figure 6.6: Operation Pulled Up

Figure 6.6 show the graph produced by the prototype application after application of the

Pull Up Operation refactoring to the graph reported in figure 6.5. The snapshot operation has

been pulled up to the class Viewer.

The Pull Up Operation and Push Down Operation refactorings have been applied multiple

times in order to verify that they produce each time the same results.

6.3.2 Introduce Initial Pseudostate

The example shown in this section corresponds to the one illustrated in figure 5.40. Figure 6.7

shows the starting graph representing the State Machine diagram. The ACTIVE composite state

does not contain an initial pseudostate.

Figure 6.8 shows the graph produced by the prototype application after the execution of the

Introduce Initial Pseudostate refactoring. An initial pseudostate has been added to the ACTIVE

103

Figure 6.7: Initial Pseudostate not present

composite state. An automatic transition has been defined between the initial pseudostate and

the Ready state.

104

Figure 6.8: Initial Pseudostate present

The Ready state has become the default initial state of the ACTIVE region. A transition

whose target is the ACTIVE state will lead the State Machine to the Ready state.

105

6.3.3 Flatten States Transitions

The example shown in this section corresponds to the one illustrated in figure 5.59. Figure 6.7

shows the starting graph representing the State Machine diagram.

Figure 6.9 shows the graph produced by the prototype application after execution of the

Flatten States Outgoing Transition refactoring. Before applying the refactoring, there are tran-

sitions whose source is the ACTIVE region. The refactoring adds similar transitions to each

sub–state of the ACTIVE region and removes the originals.

6.3.4 Remove Region

The example shown in this section corresponds to the one illustrated in figure 5.45(b)(a). Figure

6.9 shows the starting graph representing the State Machine diagram.

Figure 6.10 shows the graph produced by the prototype application after the execution of

the Remove Region refactoring. The “ACTIVE” composite state containing a region has been

removed from the State Machine diagram. After the refactoring, the states “Ready”, “Pause”,

and “Play” are contained in the upper region, directly connected to the State Machine.

6.3.5 Introduce Region

The example shown in this section corresponds to the one illustrated in figure 5.45(a)(b). Figure

6.10 shows the starting graph representing the State Machine diagram.

Figure 6.11 shows the graph produced by the prototype application after the execution of

the Introduce Region refactoring. The “ACTIVE” composite state containing a region has been

added to the State Machine diagram. The states “Ready”, “Pause” and “Play” have been moved

into the region. Transitions between states contained in the new region has been moved to the

region itself.

The refactoring has added the region that was removed in the previous example. The result-

ing graph shown in figure 6.11 is identical to the one illustrated in figure 6.9.

106

Figure 6.9: Flatten States Transitions

107

Figure 6.10: Remove Region

108

Figure 6.11: Introduce Region

109

6.4 Limitations and known issues

The testing phase has given us the possibility of finding bugs in the developed application. More-

over, this phase has been very useful in order to discover errors or not well–defined concepts in

the refactoring specification and the Type Graph specification.

Some changes have been apported to the Type Graph in order to better support model refac-

torings. The graph representation of UML Models has been completed with missing elements.

The custom control structure used to drive the application of the graph transformation rules has

been updated in order to better specify the control flow. For example, in the initial version of the

Type Graph the RefFinal node did not contain attributes result and description used to specify a

successful conclusion of the refactoring or to signal errors during its execution.

During the testing phase, errors have been found in the implementation of model refactor-

ings. We have corrected the graph transformation rules that did not work as expected and we

have added new rules in order to manage conditions that had not been considered. For example,

the Move Self Transition step illustrated in figure 5.50 has been added after some tests of the

Introduce Region refactoring. In fact, an analysis of the resulting graphs has revealed that self

transitions were not moved by transformation rules.

The development of the prototype application and the testing phase have put in evidence

some problems and limitations of the AGG tool, too. Moreover, in some cases, the documenta-

tion of the AGG API is not sufficiently detailed and the development of the application has been

sometimes more complex than we initially thought.

In section 6.4.1 we will give an overview of the limitations on the prototype and AGG. In

section 6.4.2 we will summarise the known issues of the developed application.

6.4.1 Limitations

The prototype application presents some limitations and it slightly differs from the guidelines

defined in chapter 5. For each model refactoring we have formally defined the input parameters

that have to be provided to each atomic step. Two different types of input parameters are allowed

in our approach, i.e. Java types and Node types.

The Java types consist of the Java primitive types (i.e., String, int, boolean and Float) and

Data types which may come from user–defined Java classes. The parameters of those types

are defined as variables in graph transformation rules. They can be used for evaluating JAVA

110

expressions during the application of rules or for assigning a value to the attributes.

The prototype application considers only the String, int, and boolean JAVA primitive types.

This is due to the fact that they are the only types used by the current graph representation of

UML models. Figure 6.12 shows the dialog of the application used to fill in the input parameter

values.

Figure 6.12: Application Dialog – Primitive parameters

Node types correspond to all node types defined in the Type Graph. The nodes supplied as

input parameter specify a partial match between the graph and the left–hand side of the graph

transformation rule. Using the graphical user interface of AGG it is possible to match nodes of

the left–hand side with nodes of the graph before the application of the graph transformation

rule.

AGG does not allow to use Node types in order to specify the type of other entities. For

example, only JAVA types are allowed for attributes in the graph. This is a limitation that is not

present in other graph transformation tools.

The prototype application adopts a simple approach to deal with input parameters. The user

is asked to fill in only the value of parameters whose type is a JAVA primitive type. Subsequently,

the transformation engine searches the possible matches for the graph transformation rule that

has to be execute. If the pattern of the rule applies to different parts of the UML model, the user

will be prompted to choose the interested match.

Figure 6.13 shows the dialog of the application used to choose a match when the rule can

be applied to different parts of the UML model. In particular, it shows the possible matches for

the rule Create Initial Pseudostate of the Introduce Initial Pseudostate refactoring. In the graph

111

Figure 6.13: Application Dialog – Match selection

of the running example only the composite state named “ACTIVE” is present. The composite

state contains three sub–states: each of them can be chosen as default state of the region. If

the pattern of the graph transformation rule is more complex, it become slightly difficult to

understand which parts of the UML Model correspond to the matches proposed by the dialog.

The same way, when the model refactoring requires a list of nodes, the user will be asked to

select the items he is looking for within the list of complete matches found for the current rule.

For example, the user is prompted to select the set of operations that have to be exported during

the execution of the Extract Class refactoring.

This behaviour of the prototype application is due to the fact that the AGG tool does not

manage Node types in the same way as JAVA types.

6.4.2 Known issues of the prototype

The model refactoring application lacks some features that have not been implemented yet,

because they do not affect the normal functioning of the program nor the correctness of the

model refactoring tests.

• The application allows the user to visualize the graph using the AGG graphical user in-

terface. Closing the GUI will cause the program termination. It is therefore preferable to

save the UML model and open it manually using the AGG tool.

• The user is requested twice to specify the value for input parameters defined in the control

112

flow. The user is first requested to specify the input parameter value that will be provided

to the transformation rule. When the transformation rule is going to be applied, the user

is requested to confirm the parameter value.

• In case of a failure occuring during the execution of the model refactoring, the previous

version of the model should be restored. When a model is restored the layout of the

graph is lost and the graph is unreadable. Recently, the version 1.6.0 of the AGG tool has

been released [31]. It better supports the “Undo” and “Redo” of editing operations and

transformation steps.

• Once the refactoring has been started, it is not possible to stop its execution. It will be

preferable to add the possibility to terminate it.

Chapter 7

MOFLON

In this chapter we will compare AGG with other graph transformation tools in order to explore

whether the latter could provide better support for model refactoring. This comparison allows to

give more insight in how AGG support could be improved.

The MOFLON meta modeling framework appears to be a suitable tool for the specification

of the refactoring of UML models. This chapter outlines the capabilities of the MOFLON tool

with the help of an example. A simplified representation of UML State Machine diagrams

will be presented. We have reimplemented the Introduce Initial Pseudostate and Flatten States

Outgoing Transitions refactorings in order to assess the possibility of using the MOFLON tool

for the specification of model refactorings.

7.1 The MOFLON tool

Recently, the MOFLON meta modeling framework has been released [32]. It combines the MOF

2.0 meta modeling language [33], Triple Graph Grammars [34] and JMI code generation [35].

The MOFLON tool allows to perform a wide range of tasks in the fields of model analysis, model

transformation, and model integration for standard modeling languages like UML or domain–

specific modeling languages. It is a diagram editor and code generator plug–in for the Fujaba

tool suite. [36]

Fujaba [37] is a graph based tool which uses the Unified Modeling Language UML for de-

sign and realization of software projects. Fujaba uses UML class diagrams for the specification

113

114

of graph schema. It uses a combination of Activity diagrams and Collaboration diagrams, so–

called Story Diagrams for the specification of operational behaviour. The semantics of Story

Diagrams is based on programmed graph rewriting rules [38]. In contrast to other graph based

tools, Fujaba does not rely on proprietary runtime environments. Instead, Fujaba generates stan-

dard Java source code that can be easily integrated with other Java program parts and that runs

in a common Java runtime environment. [39]

The Meta–Object Facility (MOF) is an extensible modeling language for defining, manipu-

lating, and integrating metadata and data in a platform independent manner. The MOFLON tool

implements several concepts of MOF 2.0 [33]:

• Packages: Packages, Package import, Package merge and Element import.

• Types: Classes, Datatypes, Enumerations and Generalization.

• Associations: Associations, Unidirectional and Mutual references, Association refine-

ment and Association ends.

• Annotations: Constraints, Comments and Tags

In this chapter we are going to illustrate the functioning of the MOFLON tool comparing it

with the AGG tool. The descriptions are illustrated and motivated using some examples.

7.2 Metamodel

The MOFLON tool is capable of creating MOF 2.0 compliant metamodels. In MOF 2.0 [33], a

metamodel can be divided into several packages. A MOFLON project must always contain an

outermost package that will contain all the elements of the project.

Figure 7.1 shows the packages we have defined for the specification of UML State Ma-

chine diagrams. The outermost package named UML contains three packages. The “Primitive”

package contains the primitive data types. The “StateMachineDiagram” package contains the

representation of UML State Machine diagrams. The “Transformation” package contains the

model refactoring implementations.

Primitive data types are used to describe the properties of the instances of each class defined

in the metamodel. It is necessary to specify the primitive data types in each metamodel, this

115

Figure 7.1: Metamodel Packages

allows to choose arbitrary names for the primitive types. The primitive data types can be mapped

to predefined Java classes that represent primitives type at compile time. Figure 7.2 shows the

primitive data types defined for the specification of UML State Machine diagrams.

Figure 7.2: Primitive types

The MOFLON tool allows the mapping of primitive types defined in the metamodel to prim-

itive types from the UML infrastructure library [5], which is reused in MOF. These primitive

types are mapped to JAVA classes and primitives at compile time, so the primitive types in the

metamodel adopt the semantics of the corresponding JAVA elements. The MOFLON tool al-

lows the use of String, Integer, Boolean, UnlimitedNatural, Float, and Double. Moreover, the

MOFLON tool allows the definition of Enumerations and custom data types that can be used in

property declarations. That way, the MOFLON tool is more expressive and does not impose any

limitations on the set of possible data types.

In the MOFLON tool the nodes and edges of graphs are respectively represented by classes

and associations. The MOFLON tool permits to add classes and associations inside a package.

It is possible to set the visibility of classes in order to specify whether a class have to be visible

only to other classes within its package or elsewhere. Classes allow to specify properties and op-

erations inside them. The possibility of specifying operations inside a class adds expressiveness

to the MOFLON tool. In section 7.4 we will show that use of classes as data types is allowed,

too. The MOFLON tool also permits to set a default value for the properties of a class.

116

An association represents a relationship between classes and allows to specify the roles

played by the classes. In the MOFLON tool it is possible to specify plain associations and

compositions. Associations are more expressive than edges because it is possible to specify

their Visibility and Navigability. The Navigability simply means whether –given an instance of

a class on one side of an association– you can access an instance on the other side. In contrast

to edges, associations do not permit to define any custom properties inside them.

UML 2.0 [4, 5] is formally defined using the OMG Meta–Object Facility (MOF). As the

MOFLON tool implements several concepts of MOF 2.0, it allows to easily represent the UML

Models. Figure 7.3 shows the metamodel that corresponds to UML State Machine diagrams.

The implemented metamodel is very similar to the UML 2.0 specification [4, 5] (p. 509).

Figure 7.3: State Machine diagram

The MOFLON tool does not define the concept of aggregation and this kind of relationship

must be represented using a plain association. The Enumeration type is useful to represent the

117

PseudostateKind element and the property kind of the Pseudostate element. The AGG tool

does not permit to define enumerations and a different representation had been chosen for those

elements (see figure 4.4).

The “Transformation” package shown in figure 7.4 contains the Transformer class. That

class contains the model refactoring implementation. Each model refactoring is specified as an

operation of the class. The parameters required for the refactoring are defined as input parame-

ters of the operations.

Figure 7.4: Transformation Package

In the MOFLON tool, operations of a class can be specified as Story Diagrams [40] in a

graphical editor rather than being written as piece of source code. Story Diagrams are composed

of activities and transitions, which define the order in which the activities are executed. Story

Diagrams support two kinds of activities: statement activities and Story Patterns. In sections

7.3 and 7.4 we will explain the Story Diagram and the graph transformation notation used by

the MOFOLN tool.

7.3 Primitive transformations

In MOFLON primitive graph, transformations are represented with Story Patterns. A Story Pat-

tern is a graph rewrite rule showing left and right–hand side within one picture. The combination

of left and right–hand side into a single picture results in a more concise and readable notation.

Figure 7.5 shows an example of Story Pattern. The depicted structure defines the left–hand

side of the rule, it is used to search a match of the represented pattern in the graph. The cross-

out of classes and associations means that those elements must not be present in the graph. The

cross-out has the same function of Negative Application Conditions in AGG.

The Story Pattern is composed of variables. Unbound variables are shown as boxes contain-

ing name and type, e.g. initial : Pseudostate. Bound variables are shown as boxes containing

118

Figure 7.5: Story Pattern example

only their name, e.g. diagram. Subsequent Story Patterns may use variables bound in previous

Story Patterns (or statements) of the same Story Diagram.

Figure 7.6 shows an example of Story Pattern where the left and right–hand sides are com-

bined together. Creation of elements is shown in green colour and by attaching a «create»

marker. Deletion of elements is shown in red colour and by attaching a «destroy» marker. Thus,

the left–hand side of the depicted rule consists of the normal elements together with the (red)

cancelled elements. The right–hand side consists of the normal and (green) created elements.

Figure 7.6: Story Pattern example

The rule shown in figure 7.6 destroys the old “incomingT” association between “transi-

tion” and “defaultState” and creates a new “incomingT” association between “transition” and

“compositeState”.

119

It is possible to specify the creation of a class using the same mechanism. Moreover, values

for properties of the class can be specified.

7.4 Composite transformations

The behaviour of class operations can be specified using Story Diagrams [40]. Story diagrams

are a combination of UML Activity and Collaboration diagrams. MOFLON uses UML Collab-

oration diagrams as a notation for graph rewrite rules that have been explained in section 7.3.

Story patterns are embedded into an UML activity diagram, specifying the control flow. [41]

Story Diagrams may have formal parameters for passing attribute values and object ref-

erences. Story Diagrams adapt UML Activity diagrams to represent control flow, graphically.

Thus, the basic structure of a Story Diagram consists of a number of so-called activities shown by

big rectangles with rounded left and right sides. Story diagrams support two kinds of activities:

statement activities and Story Patterns. A statement activity consists of a chunk of UML pseudo

code that can be used for I/O-operations, mathematical computations, and operation invocations.

Activities are connected by transitions, that specify the execution sequence. Execution starts at

the unique start activity represented by a filled circle. Execution proceeds following the outgoing

transition(s). Multiple outgoing transitions are guarded by mutual exclusive boolean expressions

shown in square brackets. Diamond shaped activities express branching. When the stop activity

is reached, operation execution terminates.

All data types and classes defined in the metamodel can be used for specifying types of

formal parameters. That feature is very useful in order to implement model refactorings. It

easily permits to provide to the operation the nodes of the graph that have to be used for applying

transformations. AGG permits the only use of Java types to specify input parameters, and it is

necessary to manually match nodes of the left–hand side with nodes of the graph before the

application of the graph transformation rule.

In order to give an overview of the capabilities of the MOFLON tool, we have reimplemented

the Introduce Initial Pseudostate and Flatten States Outgoing Transitions refactorings. However,

we deliberately made some simplifications because the implementation of a complete application

for model refactoring using the MOFLON tool was out of the scope of this dissertation.

120

Figure 7.7: Introduce Initial Pseudostate refactoring

121

7.4.1 Introduce Initial Pseudostate

Figure 7.7 shows the Story Diagram that implements the Introduce Initial Pseudostate refac-

toring introduced in section 5.8. The refactoring is represented as a sequence of primitive

transformation steps. In order to apply the refactoring, it is necessary to provide three input

parameters. The parameter diagram represents the State Machine diagram that is going to be

modified. The parameter container represents the region subject of the refactoring. The param-

eter defaultState specifies the default state of the region container.

The activities A, B, and C in figure 7.7 are necessary in order to verify that the region

specified as input parameter belongs to the diagram. Each instance of the State Machine class

corresponds to a diagram. The concept of “diagram” was not present in the graph representation

that we have implemented using the AGG tool. Those steps are necessary to ensure that the

region is part of the selected diagram.

The activity A adds an association “containsRecursively” between the diagram and its outer-

most region. The activity B contains a graph transformation rule that matches all the sub–region

for which the association “containsRecursively” with the diagram have not been defined yet.

The cross-out of the “containsRecursively” association between the diagram and the “internal-

Region” specifies that the association must not be present. The activity B is defined as a “For

Each” activity, it means that the activity is repeated multiple times. Each time when a match

is found the activity C is executed. The activity C adds a “containsRecursively” association

between the diagram and the “internalRegion” found by the activity B.

The activity D verifies the necessary preconditions of this refactoring. The region must not

contain an initial pseudostate and the default state provided as input parameter must belong to the

region. The cross-out of the “initial” node means that the region must not contain a pseudostate

whose type is “initial”. If the preconditions are not respected the refactoring is aborted.

The activity E adds the initial pseudostate to the region and defines the automatic transition

between the initial pseudostate and the default state of the region. The activity F is a “For

Each” activity. It contains a graph transformation rule that matches all transitions whose target

is the default state. The cross-out of the “RcontainsT” association between the “region” and the

“transition” means that the transition must be external at the region provided as input parameter.

Transitions between internal states of the region are not modified. Each time when a transition

is found the activity G is executed. The target of the transition is modified and becomes the

composite state. The refactoring ends when the activity F has matched all transitions.

122

The implementation of the refactoring using the MOFLON tool does not require to add any

additional elements to the metamodel. It is not necessary to use “Refactoring” elements like in

the AGG tool to recognize the nodes subjects of the refactoring. Variables are used in order to

indentify elements. Subsequent activities may use variables defined in previous activities. The

“For Each” activity allows to easily repeat activities, in this case to create a node multiple times.

7.4.2 Flatten States Outgoing Transitions

Figure 7.8 shows the Story Diagram that implements the Flatten States Outgoing Transitions

refactoring introduced in chaper 5.11. The refactoring is represented as a sequence of primitive

transformation steps. In order to apply the refactoring, it is necessary to provide two input

parameters. The parameter diagram represents the State Machine diagram that is going to be

modified. The parameter region represents the region subject of the refactoring.

The activities A, B, and C in figure 7.8 are necessary in order to verify that the region

specified as input parameter belongs to the diagram. Their behaviour has been explained in

section 7.4.1.

The activity D is a “For Each” activity. It contains a graph transformation rule that matches

all transitions whose source is the composite state. The “event” element associated to transition

must be present as defined in the formalisation of the refactoring. The MOFLON tool allows

to specify optional element in the graph transformation rule. The “guard” element could not

be present and it defined as optional. The refactoring ends when the activity D has matched

all transitions. Each time when a transition is found, the activity E is executed. It is a “For

Each” activity and matches all sub–states of the region. For each sub–states matched by the

graph transformation rule the activity F is executed. The activity F copies the original transition

setting the matched sub–state as source. As seen in the previous section the operation is repeated

automatically multiple times; it is not necessary to mark the transition with a “Refactoring”

elements in order to recognize it.

When the activity E has matched all the sub-states of the region the activity G is executed.

It deletes the original transition and then returns to the activity D. The red elements in the graph

transformation rule identify the elements that are going to be deleted.

It is important to notice that the graph transformation rule of the activity F is incorrect. The

“flattenGuard” node is always created even when it is not present in the original transition. This

problem can easily be avoided using branch conditions. That mechanism must be applied for

123

Figure 7.8: Flatten States Outgoing Transitions refactoring

124

each optional element. We have intently presented the incorrect version in order to show that the

MOFLON tool does not allow to specify Conditional creation of elements. It is not possible to

specify by means only of one Story Pattern that the “flattenGuard” node must be created only if

the “guard” node is defined for the original transition.

The possibility to define Conditional creation of elements in the graph transformation rules

could be an interesting enhancement and would make graph transformations more powerful.

With the MOFLON tool, it is possible to generate JAVA code for the implemented speci-

fications. The generated code complies to the JAVA Metadata Interface (JMI), a standard for

metadata management published by Sun MycroSystem [35]. JMI defines both a tailored and a

reflective interface for the metamodels.

The generated JAVA code for the Flatten States Outgoing Transitions refactoring is incorrect.

In figure 7.8 is possible to see that the expression attribute of the “flattenGuard” node assumes

the value specified in the “guard” node. This assignment is not valid because the “guard” node

may be undefined.

The incorrect version of the Flatten States Outgoing Transitions refactoring has been pre-

sented because it gives the possibility to avoid the lack of the Conditional creation concept.

Modification of the generated JAVA code makes possible to specify that the “flattenGuard” node

must be created only if the “guard” node is associated to the original transition. This approach

can be used for all optional elements.

A comparison of the resulting implementation with the solutions proposed in chapter 5.11.7

let notice some important improvements. Let Nopt be the number of optional nodes associated

to the transition, the total number of necessary graph transformation rules will be Nrules = K

where K is a constant value. If other optional nodes are added, the number of necessary graph

transformation rules will not change.

Let Ns be the number of sub–states of the region and Nt the number of transitions that have

to be modified, the computation cost of the transformation will be C = Nt × (2 + 2Ns). In

the solution implemented with the MOFLON tool both the computation cost and the number of

necessary graph transformation rules do not depend on the number of optional nodes Nopt.

125

7.5 Conclusion

As the MOFLON tool implements several concepts of MOF 2.0, it allows to easily represent

the UML Models. Classes and associations are more expressive than nodes and edges and of-

fer a better support for representing the elements of the UML Metamodel. In contrast to edges,

associations do not permit the definition of custom properties inside them. In the Type Graph im-

plemented with AGG we have used an edge property to specify the order of parameters contained

by an operation. In MOFLON this concept can be represented using Ordered Associations. In

other situations a different representation must be chosen.

The MOFLON tool allows to define Enumerations and custom data types that can be used

in property declarations. The Classes can also be used as types for the formal parameters of the

operations. That way, the MOFLON tool is more expressive and does not impose limitations on

the set of possible data types.

Story Patterns offer a more concise and readable notation. Moreover, the MOFLON tool

allows to specify optional element inside Story Patterns. The AGG tool prefers to keep the trans-

formation model rather simple by supporting the standard transformation concepts with negative

application conditions. Story Diagrams are useful in order to describe the control flow of model

refactorings. They allow to easily combine and organise the primitive transformation specifying

their execution order. The control structures of AGG were not sufficient for describing model

refactorings and we have implemented a custom control flow mechanism.

The MOFLON meta modeling framework appears to be a suitable tool for the specification

of the refactoring of UML models. Its expressive power offers a better support and avoids many

issues encountered in the AGG tool during the implementation of the model refactoring.

Furthermore, the MOFLON tool supports the import of XMI files exported from Rational

Rose enabling users to import legacy metamodels into MOFLON. XML Metadata Interchange

(XMI) [42] is an OMG’s standard for defining, interchanging, manipulating, and integrating

XML data and objects.

Chapter 8

UML Model Consistency

8.1 Model Consistency

Different aspects of a software system are covered by different UML diagrams. There is an

inherent need to preserve consistency between these UML diagrams, in particular during the

application of model refactorings.

Currently, consistency of UML models is only partially ensured by the language specifi-

cation. While it is an accepted fact that consistency maintenance is an issue in UML–based

system development, appropriate definitions of consistency are still an open research topic. B.

Hnatkowska, Z. Huzar and J. Magott have considered the problem of consistency among com-

ponents of an UML system model in [43]. They proposed OCL (Object Constraint Language)

to formalize the consistency conditions that must hold among model components.

W. Liu, S. Easterbrook and J. Mylopoulos in [44] proposed a rule–based approach for the

detection of inconsistencies in UML Models. They have defined a language for production

system and rules specific to software designs modeled in UML. Using that approach, they are

able to: detect inconsistencies, notify the users, recommend resolutions, and automatically fix

the inconsistency during the design process. [44]

J. Küster and G. Engels in [45, 46, 47] have defined an approach to model consistency

management that has led to the development of a general methodology for dealing with consis-

tency in UML-based development processes. Their methodology requires the identification of

consistency problems and then the development of partial mappings of UML models in a formal

semantic domain. In this formal semantic domain, formal consistency conditions can be defined.

126

127

The rule–based approach to consistency management relying on the theory of graph trans-

formation can be characterized by the following steps [45, 46, 47]:

• Identification of a consistency problem and informal description of required consistency.

• Formalization of the consistency concept in form of a mapping in a formal semantic do-

main and the definition of formal consistency conditions.

• Development of an operational consistency concept that can be applied in practical devel-

opment.

• Definition of consistency checks for the consistency concept.

In section 8.2 we will explain some of the consistency checks implemented in AGG using a

similar approach.

In chapter 5 consistency problems arising between static and dynamic diagrams have been

analysed. More precisely, we have discussed problems arising between UML Class diagrams

and their associated UML State Machine diagrams. For each model refactoring, we have anal-

ysed the effects on the consistency of the overall model and provided localized consistency

checks for those parts of the model that are going to be changed. The formalisation of each

refactoring contains strict preconditions that have been defined in order to preserve the consis-

tency amongst the different kinds of UML diagrams.

The approach to model consistency chosen for the purpose of this dissertation is discussed

in next section. Some of the consistency constraints and consistency checks implemented are

presented, in order to demonstrate the correctness of this approach.

In section 8.3 one more solution will be analysed in order to apply the refactorings and

preserve the consistency between different kinds of UML diagrams.

8.2 Consistency constraints

The Type Graph shown in figure 4.4 represents a subset of the concepts defined by the UML

metamodel [4, 5]. The inconsistencies that could affect UML diagrams and the inconsistencies

that could arise in the chosen representation between UML Class diagrams and UML State

Machine diagrams have been identified and classified. However, a complete representation of

UML Models may be affected by further consistency problems. Table 8.1 shows the possible

inconsistencies identified.

128

Name Description

Abstract State Machine The State Machine diagram is associated to an abstract class.

Incorrect Operation Reference The operation associated to a transition does not belong to the class

represented by the State Machine diagram.

Incorrect Composite State A composite state is composed of a region that contains the state itself.

Dangling Type Reference Type has not been defined for operations, parameters or properties.

Generalization Error A class is a generalization of an interface or an interface is a

generalization of a class.

Incorrect Interface Implementation A class does not implement all operations of an interface.

Unused Interface An interface defined in the UML Class diagram is not implemented

by any class.

Abstract Operation An abstract operation is defined inside a concrete class.

Table 8.1: List of consistency problems

The Abstract State Machine and Incorrect Operation Reference consistency problems rep-

resent inconsistencies between UML Class diagrams and UML State Machine diagrams. The

Incorrect Composite State inconsistency affects UML State Machine diagrams. The other in-

consistencies affect UML Class diagrams. In this section we will present and discuss in details

the Abstract State Machine and Incorrect Operation Reference consistency problems.

For each possible inconsistency, the corresponding consistency check has been implemented

using a graph transformation rule. A consistency check performs the necessary verifications to

ensure the model to be consistent. Figure 8.1 shows the Abstract State Machine consistency

check. If a class is an abstract class and has an associated State Machine diagram, there is an

inconsistency in the UML model. If the inconsistency is detected, the graph transformation rule

adds a “Conflict” node in the graph in order to point out this consistency problem.

Figure 8.1: Abstract State Machine

129

Figure 8.2 shows the Incorrect Operation Reference consistency check. The State Machine

diagram represents the behaviour of a class and contains transitions that refer to operations. If

an operation referred by transitions is not contained in the class associated to the State Machine

diagram, there is an inconsistency in the UML model. If the inconsistency is detected, the graph

transformation rule adds a “Conflict” node in the graph in order to point out this consistency

problem. The relationship “containsT” among the “StateMachine” node and the “Transition”

nodes is used to easily identify all transitions contained in a State Machine diagram.

Figure 8.2: Incorrect Operation Reference

The prototype application illustrated in chapter 6 allows the user to check the consistency

of the UML model. That function applies a set of graph transformation rules that implement the

consistency checks and verifies that the consistency of the UML model has been preserved after

the application of the model refactoring.

However, the implementation of a complete system of detection and resolution for model in-

consistencies would go beyond the scope of this dissertation. The approach to model consistency

chosen for the purpose of this dissertation aims to preserve the consistency. A transformation

that could lead to an inconsistent model should not be applied. To achieve this result, the con-

sistency checks have been transformed in consistency constraints.

The formalisation of each refactoring contains consistency constraints, or preconditions,

that have to be respected in order to preserve the consistency among the different kinds of UML

diagrams. If the model does not respect the consistency constraint, the model refactoring can

not be applied.

For example, a model refactoring that transforms a class to an abstract class could generate

an Abstract State Machine inconsistency. It should be applied only if the class subject of the

model refactoring does not have an associated State Machine diagram.

130

Figure 8.3 shows the NAC State Machine Does Not Exist defined for the Generate Subclass

refactoring. That precondition verifies that a State Machine diagram is not defined for the class.

Figure 8.3: Create Subclass transformation

A model refactoring that moves an operation from a class to another one could generate an

Incorrect Operation Reference inconsistency. It should be applied only if the operation is not

referenced by any transitions in the State Machine diagram.

Figure 8.4 shows the NAC Transition Does Not Refer Operation defined for the Extract

Class refactoring. That precondition verifies that in the State Machine diagram the operation is

not referenced by any transition.

Figure 8.4: Check Operation Is Used transformation

This approach avoids the application of model refactorings that could lead to an inconsistent

model. The user is requested to manually change the UML Models before the application of the

refactoring. In the next section other possible approaches to this problem are presented.

131

8.3 Model Synchronization

I. Ivkovic and K. Kontogiannis in [48] proposed a methodology to keep synchronized models at

different levels of abstraction. Their conceptual view of software models is as graphs, and model

transformations are viewed in terms of basic graph transformations such as node insertions and

deletions. Based on that view, a set of transformations applied to one model is traced and

propagated to the other by choosing from a set of possible transformations. [48]

A similar approach could be used to maintain consistency between different kinds of UML

diagrams. Once the dependencies among different kinds of UML diagrams have been identified,

it is possible to trace and propagate a set of transformations applied to one UML diagram to

another diagram, by choosing from a set of possible transformations.

The dependencies among different kinds of UML diagrams correspond to the same concepts

previously used to define consistency constraints. If a model refactoring applied to an UML

diagram could generate a model inconsistency, then the application of a transformation on the

other UML diagrams is necessary in order to preserve the synchronization between them.

A suitable solution that applies to all possible cases can rarely be found. A satisfactory

approach would consist of identifying a set of possible solutions for each consistency problem

and requesting the user to specify which one best applies to the situation.

An explanation of this approach is illustrated referring to the example of model inconsis-

tency shown in chapter 3.3.2. The Extract Class refactoring extracts a class from an existing

one exporting a set of operations and properties. After the application of the refactoring the

operations are not contained by the class anymore and the State Machine diagrams could be

incorrect. It is possible to find three solutions to preserve the synchronization between the dif-

ferent kinds of UML diagrams involved in the model refactoring. In next sections each solution

will be presented and discussed.

8.3.1 Delete transition

It is possible to delete transitions that refer to the operation involved from the State Machine

diagram. This task can be accomplished through the graph transformation rules shown in figure

8.5.

The step (a) deletes the guard associated to the transition and the step (b) deletes the event

associated to the transition. It is necessary to have separate graph transformation rules because

132

the elements could be missing in the graph. The step (c) deletes the transition associated to the

operation. These steps must be repeated multiple times in order to delete all transitions that refer

the operation.

Even if this approach preserves the consistency between different kinds of UML diagrams,

it will modify the behaviour of the system. Moreover, without verification of some necessary

preconditions this transformation could generate problems in the State Machine diagram, leading

to an inconsistent model.

(a) Delete Guard

(b) Delete Event

(c) Delete Transition

Figure 8.5: Delete transition from State Machine diagram

Input Parameters o : Operation⇒ 1

If the transition that is going to be deleted is the only outgoing transition of a state, after

the refactoring the state can never be left. If the transition that is going to be deleted is the only

incoming transition of a state, after the refactoring the state can never be reached.

This solution appears to be rarely applicable. Moreover, it should be used only if the user

133

explicitly intends to change the behaviour of the system.

8.3.2 Move the association to operations

In order to avoid the problems of the Delete transition solution, only removal of the action asso-

ciated to the transitions is possible. That way the transformation does not generate unreachable

or dead states in the State Machine diagram. In order to completely preserve the behaviour of

the system, creation of a State Machine diagram associated to the new class is necessary. The

execution of the exported operations is specified in the new State Machine diagram.

Referring to the example in chapter 3.3.2, it is possible to analyse the necessary transforma-

tions. The operations increaseCounter() and decreaseCounter() are associated to the transitions

triggered respectively by the “Button Next” and “Button Previous” events. These operations are

exported to the Counter class during the application of the refactoring and their associations with

the transitions in the State Machine diagram have to be deleted. When the modified transitions

are triggered by the events “Button Next” and “Button Previous” they continue leading the State

Machine to the Ready state.

In order to preserve the behaviour of the system it is necessary to specify that the increaseC-

ounter() and decreaseCounter() operations of the Counter class must be executed respectively

when the “Button Next” and “Button Previous” events occur. This task can be accomplished

by creating a State Machine diagram for the Counter class where the transitions associated to

the increaseCounter() and decreaseCounter() operations will be specified. Figure 8.6 shows a

possible State Machine diagram for the extracted class Counter.

Figure 8.6: Counter - State Machine diagram

These steps could be implemented using graph transformation rules. The transformation

shown in figure 8.7 creates a new State Machine diagram associated to the extracted class. The

variable strName is used to assign a name to the state contained in the State Machine diagram.

The transformation shown in figure 8.8 creates a self transition in the State Machine diagram

134

Figure 8.7: Create State Machine

Input Parameters newClass : Class⇒ 1

Figure 8.8: Copy Transition

Input Parameters exportedOperation : Operation⇒ 4

Figure 8.9: Delete Transition Operation

Input Parameters exportedOperation : Operation⇒ 2

copying the characteristics of the original transitions. The transformation shown in figure 8.9

removes the association between the operation and the original transition. The last two steps

must be executed for each operation that has to be exported to the new class.

A simplification in the implementation of the graph transformation rules has been made.

135

The transformations consider that transitions always have an associated event and they do not

consider the guard optionally associated. The guard could easily be copied to the transition in

the same way analysed during the formalisation of model refactorings. If the original transition

does not have an associated event, the transformation will add a corresponding self transition

in the State Machine diagram associated to the exported class. A transition without an event

is an automatic transition and will cause the system to continuously call the operation referred

by the transition. If the transition has an associated guard, a different consideration can be

made. However, in order to avoid the system to continuously call the operation associated to the

transition it is necessary that the evaluation of the guard is changed after the execution of the

operation. The graph transformation rules can not determine when the execution of the operation

changes the evaluation of the guard and it is not possible to decide whether the transition can be

safely copied or not.

If at least one of the transitions associated to the exported operations does not have an asso-

ciated event, this solution can not be applied.

Referring to the example in chapter 3.3.2 a further consideration can be made. If the next()

operation does not internally call the increaseCounter() operation, those transformations will

change the behaviour of the system. After the application of those transformations the in-

creaseCounter() operation is executed every time when the “Button Next” event occurs. If the

exported operations are not executed, nor called by other operations, every time when the event

occurs, this solution can not be applied.

If the State Machine diagram contains two transitions that refer two different exported oper-

ations but are triggered by the same event, an other problem arises. In the State Machine diagram

associated to the exported class, it is not possible to add two self transitions that are triggered by

the same event.

Referring to the example in chapter 3.3.2, it is possible to apply an Extract Class refactoring

in order to export the opendrive() and closedrive() operations to a new class named Device. Both

operations are executed when the “Button Drive” event occur.

Figure 8.10(b) shows a possible State Machine diagram for the extracted class Device.

Using the transformations previously described it is possible to export the opendrive() operation

and obtain the State Machine diagram shown in figure 8.10(a). The transformation in figure

8.11 allows to export the closedrive() operation obtaining the State Machine diagram shown in

figure 8.10(b). That transformation converts the existing state to a composite state and creates

136

(a) (b)

Figure 8.10: Split State example

two sub–states inside it. The transitions cause the state of the system to change between one

sub–state to the other when the associated events occur.

Figure 8.11: Split State

Input Parameters exportedOperation : Operation⇒ 7

However, this solution still presents some limitations. If the operations are exported in the

opposite order, the State Machine diagram is not correct. Specification is necessary of the exact

order in which operations have to be exported. Moreover, if a third operation has to be exported

and it is executed when the same event occurs, it is not possible to apply this transformation.

This solution appears to be applicable only to simple models. All the problems identified

must be avoided by creating all the necessary preconditions.

137

8.3.3 Wrap operation

This solution is specific for refactorings that move an operation from a class to another one (i.e.,

Extract Class, Move Operation).

In order to preserve the consistency between the Class Diagram and the State Machine dia-

gram, it is possible to specify –for each operation that has to be moved– an operation that will

wrap the call to the original operation. It is possible to choose the wrap operation among existing

operations of the class or add a new operation.

Figure 8.12 shows the transformation rule that accomplishes this task. It simply changes

the referred operation associated to the transition. The step must be repeated multiple times in

order to modify all transitions that refer to the operation.

Figure 8.12: Wrap Operation

Input Parameters wrapperO : Operation⇒ 1, originalO : Operation⇒ 2

Referring to the example in chapter 3.3.2, it is possible to apply the Extract Class and to

preserve the consistency between the Class Diagram and the State Machine diagram. The State

Machine diagram shown in figure 3.5(a) can be obtained by specifying that the next() operation

wraps the call to the increaseCounter() operation and the previous() operation wraps the call to

the decreaseCounter() operation.

This solution preserves the behaviour of the system and appears to be always applicable.

If the UML Model contains a Sequence diagram, the calls to the wrapped operations must be

added to the diagram.

Chapter 9

Conclusions

In this dissertation we have shown how the formalism of graph transformation can be used as an

underlying foundation for the specification of model refactoring. We have presented an initial

catalogue of model refactorings using a simplified version of the UML metamodel [4, 5]. Adapt-

ing refactorings to the model level has been sometimes more complex than we initially thought,

especially when we wanted transformations to have an impact on different UML diagrams.

The UML metamodel specification [4, 5] presents some poorly–defined concepts, and de-

cisions have been taken to ensure a correct definition of model refactorings. However, in some

cases those decisions could generate incompatibilities with tools that use a different approach.

We have discussed eight primitive model refactorings and we have shown that it is possible

to formalise their execution using graph transformation rules with a superimposed control flow

mechanism that we developed especially for this purpose. Graph grammars appear to be a

suitable technique for model transformation, as explored by many other works [21, 22, 49, 50].

However, the formalisation of model refactorings has pointed out some limitations of the graph

transformation notation and current–day graph transformation tools.

We have taken into account two graph transformation tools –the AGG tool [24] and the

MOFLON tool [32]– in order to compare their functionalities. The MOFLON tool allows a bet-

ter representation of UML models, due to the similarities between the UML metamodel and the

MOFLON concepts. The MOFLON tool supports a number of advanced transformation con-

cepts and additional forms for structuring rule sets. The AGG tool prefers to keep the transfor-

mation model rather simple by supporting the standard transformation concepts with negative

application conditions in addition. As advantage, AGG graph transformations can be verified

138

139

based on the theory of algebraic graph transformation. The MOFLON tool offers a better sup-

port for the implementation of model refactorings. The application of graph transformation rules

can be easily specified by means of Story Diagrams.

An important potential advantage of graph transformation is that rules may yield a concise

visual representation of complex transformations. Unfortunately, current graph transformation

notation does not suffice to easily define model refactorings so their expressive power must be

increased. Two mechanisms have been proposed so far: one for cloning, and one for expanding

nodes by graphs. [29]

We have developed a prototype application in order to verify the usability of graph transfor-

mations for the purpose of model refactorings. It also serves as a feasibility study to illustrate

that development of model refactoring tools is possible. The correctness of model refactorings

presented in this dissertation has been verified using the prototype application.

The prototype application has been developed using the AGG API delivered together with

the tool. AGG does not provide any satisfactory control structure for organizing and combining

rules, and the supplied mechanisms were not sufficient to describe model refactorings. In order

to reach our goal, we have represented the execution order of rules by means of graphs that are

used to drive the control flow of model refactorings. That way, we have added the notion of

“controlled” graph transformation, which was not previously available in AGG.

We have also explored some possible approaches in order to preserve the consistency among

different kinds of UML diagrams during the application of model refactorings. A suitable solu-

tion that applies to all possible cases can be rarely found. A satisfactory approach would consist

of identifying a set of possible solutions for each consistency problem and requesting the user to

specify which one best applies to the situation.

In this dissertation we have shown the feasibility of model refactoring using the formalism

of graph transformation. Our initial catalogue of model refactorings could be expanded, and

directly supported in standard UML tools. The prototype application illustrates that develop-

ment of such a model refactoring tool is possible. We have also analysed and discussed the

necessary improvements of the graph transformation notion and graph transformation tools in

order to increase their expressive power and allow a better support for the specification of model

refactorings.

Bibliography

[1] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-

driven software development,” IEE Software, pp. 42–45, 2003.

[2] W. F. Opdyke, Refactoring: A Program Restructuring Aid in Designing Object-Oriented

Application Frameworks. PhD thesis, University of Illinois at Urbana-Champaign, 1992.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[4] Object Management Group, “Unified Modeling Language: Superstructure version 2.0.”

formal/2005-07-04, August 2005.

[5] Object Management Group, “Unified Modeling Language: Infrastructure version 2.0.”

formal/2005-07-05, August 2005.

[6] A. Finkelstein, G. Spanoudakis, and D. Till, “Rule-based detection of inconsistency in

UML models,” in Joint proceedings of second international software architecture work-

shop (ISAW-2) and international workshop on multiple perspectives in software develop-

ment (Viewpoints 96) on SIGSOFT 96 workshops, pp. 172–174, ACM Press, 1996.

[7] G. Spanoudakis and A. Zisman, Handbook of Software Engineering and Knowledge Engi-

neering, ch. Inconsistency management in software engineering: Survey and open research

issues, pp. 329–380. World scientific, 2001.

[8] R. Van Der Straeten, Inconsistency Management in Model–Driven Engineering: An Ap-

proach using Description Logics. PhD thesis, Department of Computer Science, Vrije

Universiteit Brussel, Belgium, September 2005.

[9] Wikipedia, “Unified Modeling Language,” November 12 2006.

i

ii

[10] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” in Proc. Int’l Workshop

on Graph and Model Transformation (GraMoT 2005), September 2005.

[11] J.-M. Favre, “Towards a basic theory to model model driven engineering,” in Proc. 3rd

Workshop in Software Model Engineering (Satellite workshop at the 7th International Con-

ference on the UML), 2004.

[12] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Transactions on Software

Engineering, vol. 30, pp. 126–162, February 2004.

[13] D. B. Roberts, Practical Analysis for Refactoring. PhD thesis, University of Illinois at

Urbana-Champaign, 1999.

[14] J. Zhang, Y. Lin, and J. Gray, “Generic and domain-specific model refactoring using

a model transformation engine,” in Model-Driven Software Development, pp. 199–217,

Springer Berlin Heidelberg, 2005.

[15] T. Mens, S. Demeyer, and D. Janssens, “Formalising behaviour preserving program trans-

formations,” in Proc. Int’l Conf. Graph Transformation (A. Corradini, H. Ehrig, H.-J. Kre-

owski, and G. Rozenberg, eds.), vol. 2505 of Lecture Notes in Computer Science, pp. 286–

301, Springer-Verlag, 2002.

[16] M. Nagl, ed., A tutorial and bibliographical survey on graph-grammars, Graph-Grammars

and their Application to Computer Science and Biology, Springer-Verlag, 1979.

[17] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, eds., Graph-Grammars and Their

Application to Computer Science, vol. 291 of Lecture Notes in Computer Science, Springer-

Verlag, 1987.

[18] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph Trans-

formation (Monographs in Theoretical Computer Science. An EATCS Series). Secaucus,

NJ, USA: Springer-Verlag New York, Inc., 2006.

[19] A. Corradini, U. Montanari, and F. Rossi, “Graph processes,” Fundamenta Informaticae,

vol. 26, no. 3 and 4, pp. 241–265, 1996.

iii

[20] J. Niere and A. Zündorf, “Using Fujaba for the development of production control sys-

tems,” in Proc. Int. Workshop Agtive 99 (M. Nagl, A. Schürr, and M. Münch, eds.),

vol. 1779 of Lecture Notes in Computer Science, pp. 181–191, Springer-Verlag, 2000.

[21] T. Mens, “On the use of graph transformations for model refactoring,” in Generative and

transformational techniques in software engineering (J. V. Ralf Lämmel, Joao Saraiva,

ed.), pp. 67–98, Departamento di Informatica, Universidade do Minho, 2005.

[22] T. Mens, P. Van Gorp, D. Varró, and G. Karsai, “Applying a model transformation taxon-

omy to graph transformation technology,” in Proc. Int’l Workshop on Graph and Model

Transformation (GraMoT 2005), September 2005.

[23] G. Taentzer, “Agg: A tool environment for algebraic graph transformation,” in Applica-

tions of Graph Transformations with Industrial Relevance, vol. 1779 of Lecture Notes in

Computer Science, pp. 481–488, Springer-Verlag, 1999.

[24] TU Berlin, “The Attributed Graph Grammar System, version 1.5.0,” 2006.

[25] H. Ehrig and Michael Löwe, “Parallel and distributed derivations in the single-pushout

approach,” Theoretical Computer Science, vol. 109, pp. 123–143, 1993.

[26] G. Taentzer, I. Fischer, M. Koch, and V. Volle, “Visual design of distributed systems by

graph transformation,” in Concurrency, Parallelism, and Distribution., vol. 3 of Handbook

of Graph Grammars and Computing by Graph Transformation, World Scientific, 1999.

[27] Object Management Group, “Unified Modeling Language specification version 1.5.”

formal/2003-03-01, March 2003.

[28] G. Sunyé, D. Pollet, Y. LeTraon, and J.-M. Jézéquel, “Refactoring UML models,” in Proc.

UML 2001, vol. 2185 of Lecture Notes in Computer Science, pp. 134–138, Springer-Verlag,

2001.

[29] B. Hoffmann, D. Janssens, and N. Van Eetvelde, “Cloning and expanding graph transfor-

mation rules for refactoring,” Proc. Int’l Workshop on Graph and Model Transformation

(GraMoT 2005), vol. 152, pp. 53–67, 2006.

iv

[30] A. Agrawal, G. Karsai, and F. Shi, “A UML–based graph transformation approach for

implementig domain-specific model transformations,” International Journal on Software

and Systems Modeling, 2003.

[31] TU Berlin, “The Attributed Graph Grammar System, version 1.6.0,” April 1 2007.

[32] Real-Time Systems Lab, Darmstadt University of Technology., “Moflon, version 1.0.0,”

December 15 2006.

[33] Object Management Group, “Meta object facility (MOF) 2.0 specification,” April 2003.

[34] Andy Schürr, “Specification of graph translators with triple graph grammars,” Tech. Rep.

AIB 94-12, RWTH Aachen, 1994.

[35] Sun Microsystems, “The Java Metadata Interface (JMI) Specification.” JSR-000040, June

2002.

[36] U. Nickel, J. Niere, and A. Zündorf, “The fujaba environment,” in ICSE ’00: Proceedings

of the 22nd international conference on Software engineering, (New York, NY, USA),

pp. 742–745, ACM Press, 2000.

[37] Universitat–Gesamthochschule Paderborn, “Fujaba,” 1998.

[38] A. Zündorf, “Rigorous object oriented software development,” 2001. Habilitation Thesis.

[39] L. Geiger and A. Zündorf, “Graph based debugging with fujaba,” IEE Software, vol. 72,

no. 2, 2002.

[40] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story diagrams: A new graph rewrite

language based on the unified modeling language and java.,” in TAGT, pp. 296–309, 1998.

[41] I. Diethelm, L. Geiger, and A. Zündorf, “Systematic story driven modeling, a case study,”

in Workshop on Scenarios and state machines: models, algorithms, and tools, May 2004.

[42] Object Management Group, “XML Metadata Interchange (XMI), v2.1.” formal/05-09-01,

January 2005.

[43] B. Hnatkowska, Z. Huzar, and J. Magott, “Consistency checking in UML models.”

v

[44] W. Liu, S. Easterbrook, and J. Mylopoulos, “Rule-based detection of inconsistency in UML

models,” 2002.

[45] G. Engels, R. Heckel, J. M. Kuster, and L. Groenewegen, “Consistency-preserving model

evolution through transformations.,” in UML, pp. 212–226, 2002.

[46] G. Engels, R. Heckel, and J. M. Kuster, “The consistency workbench: A tool for consis-

tency management in UML-based development.,” in UML, pp. 356–359, 2003.

[47] J. M. Kuster and G. Engels, “Consistency management within model-based object-oriented

development of components.,” in FMCO, pp. 157–176, 2003.

[48] I. Ivkovic and K. Kontogiannis, “Model synchronization as a problem of maximizing

model dependencies,” in OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN

conference on Object-oriented programming systems, languages, and applications, (New

York, NY, USA), pp. 222–223, ACM Press, 2004.

[49] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro, “Viatra – visual

automated transformations for formal verification and validation of UML models,” ase,

vol. 00, p. 267, 2002.

[50] S. Sendall, “Combining generative and graph transformation techniques for model trans-

formation: An effective alliance?,” in 2nd OOPSLA Workshop on Generative Techniques

in the context of Model Driven Architecture, Lecture Notes in Computer Science, 2003.

